计算机视觉和模式识别的code

UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下:

 
TypeTopicNameReferenceLink
CodeStructure from motionlibmv http://code.google.com/p/libmv/
CodeDimension ReductionLLE http://www.cs.nyu.edu/~roweis/lle/code.html
CodeClusteringSpectral Clustering - UCSD Project http://vision.ucsd.edu/~sagarwal/spectral-0.2.tgz
CodeClusteringK-Means 323个Item- Oxford Code http://www.cs.ucf.edu/~vision/Code/vggkmeans.zip
CodeImage DeblurringNon-blind deblurring (and blind denoising) with integrated noise estimationU. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring with integrated noise estimation, CVPR 2011http://www.gris.tu-darmstadt.de/research/visinf/software/index.en.htm
CodeStructure from motionStructure from Motion toolbox for Matlab by Vincent Rabaud http://code.google.com/p/vincents-structure-from-motion-matlab-toolbox/
CodeMultiple View GeometryMatlab Functions for Multiple View Geometry http://www.robots.ox.ac.uk/~vgg/hzbook/code/
CodeObject DetectionMax-Margin Hough TransformS. Maji and J. Malik, Object Detection Using a Max-Margin Hough Transform. CVPR 2009http://www.cs.berkeley.edu/~smaji/projects/max-margin-hough/
CodeImage SegmentationSLIC SuperpixelsR. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html
CodeVisual TrackingTracking using Pixel-Wise PosteriorsC. Bibby and I. Reid, Tracking using Pixel-Wise Posteriors, ECCV 2008http://www.robots.ox.ac.uk/~cbibby/research_pwp.shtml
CodeVisual TrackingVisual Tracking with Histograms and Articulating BlocksS. M. Shshed Nejhum, J. Ho, and M.-H.Yang, Visual Tracking with Histograms and Articulating Blocks, CVPR 2008http://www.cise.ufl.edu/~smshahed/tracking.htm
CodeSparse RepresentationRobust Sparse Coding for Face RecognitionM. Yang, L. Zhang, J. Yang and D. Zhang, “Robust Sparse Coding for Face Recognition,” CVPR 2011http://www4.comp.polyu.edu.hk/~cslzhang/code/RSC.zip
CodeFeature Detection andFeature ExtractionGroups of Adjacent Contour SegmentsV. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, Groups of Adjacent Contour Segments for Object Detection, PAMI, 2007http://www.robots.ox.ac.uk/~vgg/share/ferrari/release-kas-v102.tgz
CodeDensity EstimationKernel Density Estimation Toolbox http://www.ics.uci.edu/~ihler/code/kde.html
CodeIllumination, Reflectance, and ShadowGround shadow detectionJ.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer Photographs, ECCV 2010http://www.jflalonde.org/software.html#shadowDetection
CodeImage Denoising,Image Super-resolution, andImage DeblurringLearning Models of Natural Image PatchesD. Zoran and Y. Weiss, From Learning Models of Natural Image Patches to Whole Image Restoration, ICCV, 2011http://www.cs.huji.ac.il/~daniez/
CodeIllumination, Reflectance, and ShadowEstimating Natural Illumination from a Single Outdoor ImageJ-F. Lalonde, A. A. Efros, S. G. Narasimhan, Estimating Natural Illumination from a Single Outdoor Image , ICCV 2009http://www.cs.cmu.edu/~jlalonde/software.html#skyModel
CodeVisual TrackingLucas-Kanade affine template trackingS. Baker and I. Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, IJCV 2002http://www.mathworks.com/matlabcentral/fileexchange/24677-lucas-kanade-affine-template-tracking
CodeSaliency DetectionSaliency-based video segmentationK. Fukuchi, K. Miyazato, A. Kimura, S. Takagi and J. Yamato, Saliency-based video segmentation with graph cuts and sequentially updated priors, ICME 2009http://www.brl.ntt.co.jp/people/akisato/saliency3.html
CodeDimension ReductionLaplacian Eigenmaps http://www.cse.ohio-state.edu/~mbelkin/algorithms/Laplacian.tar
CodeIllumination, Reflectance, and ShadowWhat Does the Sky Tell Us About the Camera?J-F. Lalonde, S. G. Narasimhan, A. A. Efros, What Does the Sky Tell Us About the Camera?, ECCV 2008http://www.cs.cmu.edu/~jlalonde/software.html#skyModel
CodeImage FilteringSVM for Edge-Preserving FilteringQ. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering, CVPR 2010http://vision.ai.uiuc.edu/~qyang6/publications/code/cvpr-10-svmbf/program_video_conferencing.zip
CodeImage SegmentationRecovering Occlusion Boundaries from a Single ImageD. Hoiem, A. Stein, A. A. Efros, M. Hebert, Recovering Occlusion Boundaries from a Single Image, ICCV 2007.http://www.cs.cmu.edu/~dhoiem/software/
CodeVisual TrackingVisual Tracking DecompositionJ Kwon and K. M. Lee, Visual Tracking Decomposition, CVPR 2010http://cv.snu.ac.kr/research/~vtd/
CodeVisual TrackingGPU Implementation of Kanade-Lucas-Tomasi Feature TrackerS. N Sinha, J.-M. Frahm, M. Pollefeys and Y. Genc, Feature Tracking and Matching in Video Using Programmable Graphics Hardware, MVA, 2007http://cs.unc.edu/~ssinha/Research/GPU_KLT/
CodeObject DetectionRecognition using regionsC. Gu, J. J. Lim, P. Arbelaez, and J. Malik, CVPR 2009http://www.cs.berkeley.edu/~chunhui/publications/cvpr09_v2.zip
CodeSaliency DetectionSaliency Using Natural statisticsL. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statistics. Journal of Vision, 2008http://cseweb.ucsd.edu/~l6zhang/
CodeImage FilteringLocal Laplacian FiltersS. Paris, S. Hasinoff, J. Kautz, Local Laplacian Filters: Edge-Aware Image Processing with a Laplacian Pyramid, SIGGRAPH 2011http://people.csail.mit.edu/sparis/publi/2011/siggraph/matlab_source_code.zip
CodeCommon Visual Pattern DiscoverySketching the CommonS. Bagon, O. Brostovsky, M. Galun and M. Irani, Detecting and Sketching the Common, CVPR 2010http://www.wisdom.weizmann.ac.il/~bagon/matlab_code/SketchCommonCVPR10_v1.1.tar.gz
CodeImage DenoisingBLS-GSM http://decsai.ugr.es/~javier/denoise/
CodeCamera CalibrationEpipolar Geometry ToolboxG.L. Mariottini, D. Prattichizzo, EGT: a Toolbox for Multiple View Geometry and Visual Servoing, IEEE Robotics & Automation Magazine, 2005http://egt.dii.unisi.it/
CodeDepth SensorKinect SDKhttp://www.microsoft.com/en-us/kinectforwindows/http://www.microsoft.com/en-us/kinectforwindows/
CodeImage Super-resolutionSelf-Similarities for Single Frame Super-ResolutionC.-Y. Yang, J.-B. Huang, and M.-H. Yang, Exploiting Self-Similarities for Single Frame Super-Resolution, ACCV 2010https://eng.ucmerced.edu/people/cyang35/ACCV10.zip
CodeImage DenoisingGaussian Field of Experts http://www.cs.huji.ac.il/~yweiss/BRFOE.zip
CodeObject DetectionPoseletL. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations, ICCV 2009http://www.eecs.berkeley.edu/~lbourdev/poselets/
CodeKernels and DistancesEfficient Earth Mover's Distance with L1 Ground Distance (EMD_L1)H. Ling and K. Okada, An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison, PAMI 2007http://www.dabi.temple.edu/~hbling/code/EmdL1_v3.zip
CodeNearest Neighbors MatchingSpectral HashingY. Weiss, A. Torralba, R. Fergus, Spectral Hashing, NIPS 2008http://www.cs.huji.ac.il/~yweiss/SpectralHashing/
CodeImage DenoisingField of Experts http://www.cs.brown.edu/~roth/research/software.html
CodeImage SegmentationMultiscale Segmentation TreeE. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,” ACCV 2009 andN. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996http://vision.ai.uiuc.edu/segmentation
CodeMultiple Instance LearningMILISZ. Fu, A. Robles-Kelly, and J. Zhou, MILIS: Multiple instance learning with instance selection, PAMI 2010 
CodeNearest Neighbors MatchingFLANN: Fast Library for Approximate Nearest Neighbors http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
CodeFeature Detection andFeature ExtractionMaximally stable extremal regions (MSER) - VLFeatJ. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002http://www.vlfeat.org/
CodeAlpha MattingSpectral MattingA. Levin, A. Rav-Acha, D. Lischinski. Spectral Matting. PAMI 2008http://www.vision.huji.ac.il/SpectralMatting/
CodeMulti-View StereoPatch-based Multi-view Stereo SoftwareY. Furukawa and J. Ponce, Accurate, Dense, and Robust Multi-View Stereopsis, PAMI 2009http://grail.cs.washington.edu/software/pmvs/
CodeClusteringSelf-Tuning Spectral Clustering http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html
CodeFeature Extraction andObject DetectionHistogram of Oriented Graidents - OLT for windowsN. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005http://www.computing.edu.au/~12482661/hog.html
CodeImage UnderstandingNonparametric Scene Parsing via Label TransferC. Liu, J. Yuen, and Antonio Torralba, Nonparametric Scene Parsing via Label Transfer, PAMI 2011http://people.csail.mit.edu/celiu/LabelTransfer/index.html
CodeMultiple Kernel LearningDOGMAF. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learning. CVPR, 2010http://dogma.sourceforge.net/
CodeDistance Metric LearningMatlab Toolkit for Distance Metric Learning http://www.cs.cmu.edu/~liuy/distlearn.htm
CodeOptical FlowBlack and Anandan's Optical Flow http://www.cs.brown.edu/~dqsun/code/ba.zip
CodeText RecognitionText recognition in the wildK. Wang, B. Babenko, and S. Belongie, End-to-end Scene Text Recognition, ICCV 2011http://vision.ucsd.edu/~kai/grocr/
CodeMRF OptimizationMRF Minimization EvaluationR. Szeliski et al., A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors, PAMI, 2008http://vision.middlebury.edu/MRF/
CodeSaliency DetectionContext-aware saliency detectionS. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010.http://webee.technion.ac.il/labs/cgm/Computer-Graphics-Multimedia/Software/Saliency/Saliency.html
CodeSaliency DetectionLearning to Predict Where Humans LookT. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans Look, ICCV, 2009http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html
CodeStereoStereo EvaluationD. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, IJCV 2001http://vision.middlebury.edu/stereo/
CodeImage SegmentationQuick-ShiftA. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode Seeking, ECCV, 2008http://www.vlfeat.org/overview/quickshift.html
CodeSaliency DetectionGraph-based visual saliencyJ. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007http://www.klab.caltech.edu/~harel/share/gbvs.php
CodeClusteringK-Means - VLFeat http://www.vlfeat.org/
CodeObject DetectionA simple object detector with boostingICCV 2005 short courses on Recognizing and Learning Object Categorieshttp://people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html
CodeImage Quality AssessmentStructural SIMilarity https://ece.uwaterloo.ca/~z70wang/research/ssim/
CodeStructure from motionFIT3D http://www.fit3d.info/
CodeImage DenoisingBM3D http://www.cs.tut.fi/~foi/GCF-BM3D/
CodeSaliency DetectionDiscriminant Saliency for Visual Recognition from Cluttered ScenesD. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered Scenes, NIPS, 2004http://www.svcl.ucsd.edu/projects/saliency/
CodeImage DenoisingNonlocal means with cluster treesT. Brox, O. Kleinschmidt, D. Cremers, Efficient nonlocal means for denoising of textural patterns, TIP 2008http://lmb.informatik.uni-freiburg.de/resources/binaries/nlmeans_brox_tip08Linux64.zip
CodeSaliency DetectionGlobal Contrast based Salient Region DetectionM.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region Detection. CVPR, 2011http://cg.cs.tsinghua.edu.cn/people/~cmm/saliency/
CodeVisual TrackingMotion Tracking in Image SequencesC. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time tracking, PAMI, 2000http://www.cs.berkeley.edu/~flw/tracker/
CodeSaliency DetectionItti, Koch, and Niebur' saliency detectionL. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. PAMI, 1998http://www.saliencytoolbox.net/
CodeFeature Detection,Feature Extraction, andAction RecognitionSpace-Time Interest Points (STIP)I. Laptev, On Space-Time Interest Points, IJCV, 2005 and I. Laptev and T. Lindeberg, On Space-Time Interest Points, IJCV 2005http://www.irisa.fr/vista/Equipe/People/Laptev/download/stip-1.1-winlinux.zipandhttp://www.nada.kth.se/cvap/abstracts/cvap284.html
CodeTexture SynthesisImage Quilting for Texture Synthesis and TransferA. A. Efros and W. T. Freeman, Image Quilting for Texture Synthesis and Transfer, SIGGRAPH 2001http://www.cs.cmu.edu/~efros/quilt_research_code.zip
CodeImage DenoisingNon-local Means http://dmi.uib.es/~abuades/codis/NLmeansfilter.m
CodeLow-Rank ModelingTILT: Transform Invariant Low-rank TexturesZ. Zhang, A. Ganesh, X. Liang, and Y. Ma, TILT: Transform Invariant Low-rank Textures, IJCV 2011http://perception.csl.uiuc.edu/matrix-rank/tilt.html
CodeObject ProposalObjectness measureB. Alexe, T. Deselaers, V. Ferrari, What is an Object?, CVPR 2010http://www.vision.ee.ethz.ch/~calvin/objectness/objectness-release-v1.01.tar.gz
CodeImage FilteringReal-time O(1) Bilateral FilteringQ. Yang, K.-H. Tan and N. Ahuja, Real-time O(1) Bilateral Filtering, CVPR 2009http://vision.ai.uiuc.edu/~qyang6/publications/code/qx_constant_time_bilateral_filter_ss.zip
CodeImage Quality AssessmentSPIQA http://vision.ai.uiuc.edu/~bghanem2/shared_code/SPIQA_code.zip
CodeObject RecognitionBiologically motivated object recognitionT. Serre, L. Wolf and T. Poggio. Object recognition with features inspired by visual cortex, CVPR 2005http://cbcl.mit.edu/software-datasets/standardmodel/index.html
CodeIllumination, Reflectance, and ShadowShadow Detection using Paired RegionR. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011http://www.cs.illinois.edu/homes/guo29/projects/shadow.html
CodeIllumination, Reflectance, and ShadowReal-time Specular Highlight RemovalQ. Yang, S. Wang and N. Ahuja, Real-time Specular Highlight Removal Using Bilateral Filtering, ECCV 2010http://www.cs.cityu.edu.hk/~qiyang/publications/code/eccv-10.zip
CodeMRF OptimizationMax-flow/min-cutY. Boykov and V. Kolmogorov, An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision, PAMI 2004http://vision.csd.uwo.ca/code/maxflow-v3.01.zip
CodeOptical FlowOptical Flow EvaluationS. Baker et al. A Database and Evaluation Methodology for Optical Flow, IJCV, 2011http://vision.middlebury.edu/flow/
CodeImage Super-resolutionMRF for image super-resolutionW. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image Processing, Chapter 10. MIT Press, 2011http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution.html
CodeMRF OptimizationPlanar Graph CutF. R. Schmidt, E. Toppe and D. Cremers, Efficient Planar Graph Cuts with Applications in Computer Vision, CVPR 2009http://vision.csd.uwo.ca/code/PlanarCut-v1.0.zip
CodeObject DetectionFeature CombinationP. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/index.html
CodeStructure from motionVisualSFM : A Visual Structure from Motion System http://www.cs.washington.edu/homes/ccwu/vsfm/
CodeNearest Neighbors MatchingANN: Approximate Nearest Neighbor Searching http://www.cs.umd.edu/~mount/ANN/
CodeSaliency DetectionLearning Hierarchical Image Representation with Sparsity, Saliency and LocalityJ. Yang and M.-H. Yang, Learning Hierarchical Image Representation with Sparsity, Saliency and Locality, BMVC 2011 
CodeOptical FlowOptical Flow by Deqing SunD. Sun, S. Roth, M. J. Black, Secrets of Optical Flow Estimation and Their Principles, CVPR, 2010http://www.cs.brown.edu/~dqsun/code/flow_code.zip
CodeImage UnderstandingDiscriminative Models for Multi-Class Object LayoutC. Desai, D. Ramanan, C. Fowlkes. "Discriminative Models for Multi-Class Object Layout, IJCV 2011http://www.ics.uci.edu/~desaic/multiobject_context.zip
CodeGraph MatchingHyper-graph Matching via Reweighted Random WalksJ. Lee, M. Cho, K. M. Lee. "Hyper-graph Matching via Reweighted Random Walks", CVPR 2011http://cv.snu.ac.kr/research/~RRWHM/
CodeObject DetectionHough Forests for Object DetectionJ. Gall and V. Lempitsky, Class-Specific Hough Forests for Object Detection, CVPR, 2009http://www.vision.ee.ethz.ch/~gallju/projects/houghforest/index.html
CodeObject DiscoveryUsing Multiple Segmentations to Discover Objects and their Extent in Image CollectionsB. Russell, A. A. Efros, J. Sivic, W. T. Freeman, A. Zisserman, Using Multiple Segmentations to Discover Objects and their Extent in Image Collections, CVPR 2006http://people.csail.mit.edu/brussell/research/proj/mult_seg_discovery/index.html
CodeDimension ReductionDiffusion maps http://www.stat.cmu.edu/~annlee/software.htm
CodeMultiple Kernel LearningSHOGUNS. Sonnenburg, G. Rätsch, C. Schäfer, B. Schölkopf . Large scale multiple kernel learning. JMLR, 2006http://www.shogun-toolbox.org/
CodeDistance TransformationDistance Transforms of Sampled Functions http://people.cs.uchicago.edu/~pff/dt/
CodeImage FilteringImage smoothing via L0 Gradient MinimizationL. Xu, C. Lu, Y. Xu, J. Jia, Image smoothing via L0 Gradient Minimization, SIGGRAPH Asia 2011http://www.cse.cuhk.edu.hk/~leojia/projects/L0smoothing/L0smoothing.zip
CodeFeature ExtractionPCA-SIFTY. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004http://www.cs.cmu.edu/~yke/pcasift/
CodeVisual TrackingParticle Filter Object Tracking http://blogs.oregonstate.edu/hess/code/particles/
CodeFeature ExtractionsRD-SIFTM. Lourenco, J. P. Barreto and A. Malti, Feature Detection and Matching in Images with Radial Distortion, ICRA 2010http://arthronav.isr.uc.pt/~mlourenco/srdsift/index.html#
CodeMultiple Instance LearningMILESY. Chen, J. Bi and J. Z. Wang, MILES: Multiple-Instance Learning via Embedded Instance Selection. PAMI 2006http://infolab.stanford.edu/~wangz/project/imsearch/SVM/PAMI06/
CodeAction RecognitionDense Trajectories Video DescriptionH. Wang and A. Klaser and C. Schmid and C.- L. Liu, Action Recognition by Dense Trajectories, CVPR, 2011http://lear.inrialpes.fr/people/wang/dense_trajectories
CodeImage SegmentationEfficient Graph-based Image Segmentation - C++ codeP. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation, IJCV 2004http://people.cs.uchicago.edu/~pff/segment/
CodeObject ProposalParametric min-cutJ. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object Segmentation, CVPR 2010http://sminchisescu.ins.uni-bonn.de/code/cpmc/
CodeCommon Visual Pattern DiscoveryCommon Visual Pattern Discovery via Spatially Coherent CorrespondencesH. Liu, S. Yan, "Common Visual Pattern Discovery via Spatially Coherent Correspondences", CVPR 2010https://sites.google.com/site/lhrbss/home/papers/SimplifiedCode.zip?attredirects=0
CodeSparse RepresentationSparse coding simulation softwareOlshausen BA, Field DJ, "Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images", Nature 1996http://redwood.berkeley.edu/bruno/sparsenet/
CodeMRF OptimizationMax-flow/min-cut for massive gridsA. Delong and Y. Boykov, A Scalable Graph-Cut Algorithm for N-D Grids, CVPR 2008http://vision.csd.uwo.ca/code/regionpushrelabel-v1.03.zip
CodeOptical FlowHorn and Schunck's Optical Flow http://www.cs.brown.edu/~dqsun/code/hs.zip
CodeSparse RepresentationSparse and Redundant Representations: From Theory to Applications in Signal and Image ProcessingM. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processinghttp://www.cs.technion.ac.il/~elad/Various/Matlab-Package-Book.rar
CodeImage UnderstandingTowards Total Scene UnderstandingL.-J. Li, R. Socher and Li F.-F.. Towards Total Scene Understanding:Classification, Annotation and Segmentation in an Automatic Framework, CVPR 2009http://vision.stanford.edu/projects/totalscene/index.html
CodeCamera CalibrationCamera Calibration Toolbox for Matlabhttp://www.vision.caltech.edu/bouguetj/calib_doc/htmls/ref.htmlhttp://www.vision.caltech.edu/bouguetj/calib_doc/
CodeImage SegmentationTurbepixelsA. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric Flows, PAMI 2009http://www.cs.toronto.edu/~babalex/research.html
CodeFeature DetectionEdge Foci Interest PointsL. Zitnickand K. Ramnath, Edge Foci Interest Points, ICCV, 2011http://research.microsoft.com/en-us/um/people/larryz/edgefoci/edge_foci.htm
CodeFeature ExtractionLocal Self-Similarity DescriptorE. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity/
CodeSubspace LearningGeneralized Principal Component AnalysisR. Vidal, Y. Ma and S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003http://www.vision.jhu.edu/downloads/main.php?dlID=c1
CodeCamera CalibrationEasyCamCalibJ. Barreto, J. Roquette, P. Sturm, and F. Fonseca, Automatic camera calibration applied to medical endoscopy, BMVC, 2009http://arthronav.isr.uc.pt/easycamcalib/
CodeImage SegmentationSuperpixel by Gerg MoriX. Ren and J. Malik. Learning a classification model for segmentation. ICCV, 2003http://www.cs.sfu.ca/~mori/research/superpixels/
CodeImage UnderstandingObject BankLi-Jia Li, Hao Su, Eric P. Xing and Li Fei-Fei. Object Bank: A High-Level Image Representation for Scene Classification and Semantic Feature Sparsification, NIPS 2010http://vision.stanford.edu/projects/objectbank/index.html
CodeSaliency DetectionSpectrum Scale Space based Visual SaliencyJ Li, M D. Levine, X An and H. He, Saliency Detection Based on Frequency and Spatial Domain Analyses, BMVC 2011http://www.cim.mcgill.ca/~lijian/saliency.htm
CodeSparse RepresentationFisher Discrimination Dictionary Learning for Sparse RepresentationM. Yang, L. Zhang, X. Feng and D. Zhang, Fisher Discrimination Dictionary Learning for Sparse Representation, ICCV 2011http://www4.comp.polyu.edu.hk/~cslzhang/code/FDDL.zip
CodeObject DetectionCascade Object Detection with Deformable Part ModelsP. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part Models. CVPR, 2010http://people.cs.uchicago.edu/~rbg/star-cascade/
CodeObject SegmentationSparse to Dense LabelingP. Ochs, T. Brox, Object Segmentation in Video: A Hierarchical Variational Approach for Turning Point Trajectories into Dense Regions, ICCV 2011http://lmb.informatik.uni-freiburg.de/resources/binaries/SparseToDenseLabeling.tar.gz
CodeOptical FlowDense Point TrackingN. Sundaram, T. Brox, K. Keutzer Dense point trajectories by GPU-accelerated large displacement optical flow, ECCV 2010http://lmb.informatik.uni-freiburg.de/resources/binaries/
CodeVisual TrackingTracking with Online Multiple Instance LearningB. Babenko, M.-H. Yang, S. Belongie, Visual Tracking with Online Multiple Instance Learning, PAMI 2011http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
CodeGraph MatchingReweighted Random Walks for Graph MatchingM. Cho, J. Lee, and K. M. Lee, Reweighted Random Walks for Graph Matching, ECCV 2010http://cv.snu.ac.kr/research/~RRWM/
CodeMachine LearningStatistical Pattern Recognition ToolboxM.I. Schlesinger, V. Hlavac: Ten lectures on the statistical and structural pattern recognition, Kluwer Academic Publishers, 2002http://cmp.felk.cvut.cz/cmp/software/stprtool/
CodeImage Super-resolutionSprarse coding super-resolutionJ. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation, TIP 2010http://www.ifp.illinois.edu/~jyang29/ScSR.htm
CodeObject DetectionDiscriminatively Trained Deformable Part ModelsP. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan. Object Detection with Discriminatively Trained Part Based Models, PAMI, 2010http://people.cs.uchicago.edu/~pff/latent/
CodeMultiple Instance LearningMIForestsC. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized Trees, ECCV 2010http://www.ymer.org/amir/software/milforests/
CodeOptical FlowLarge Displacement Optical FlowT. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimation, PAMI 2011http://lmb.informatik.uni-freiburg.de/resources/binaries/
CodeMultiple View GeometryMATLAB and Octave Functions for Computer Vision and Image ProcessingP. D. Kovesi. MATLAB and Octave Functions for Computer Vision and Image Processing, http://www.csse.uwa.edu.au/~pk/research/matlabfnshttp://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html
CodeImage FilteringAnisotropic DiffusionP. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, PAMI 1990http://www.mathworks.com/matlabcentral/fileexchange/14995-anisotropic-diffusion-perona-malik
CodeFeature Detection andFeature ExtractionGeometric BlurA. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005http://www.robots.ox.ac.uk/~vgg/software/MKL/
CodeLow-Rank ModelingLow-Rank Matrix Recovery and Completion http://perception.csl.uiuc.edu/matrix-rank/sample_code.html
CodeObject DetectionA simple parts and structure object detectorICCV 2005 short courses on Recognizing and Learning Object Categorieshttp://people.csail.mit.edu/fergus/iccv2005/partsstructure.html
CodeKernels and DistancesDiffusion-based distanceH. Ling and K. Okada, Diffusion Distance for Histogram Comparison, CVPR 2006http://www.dabi.temple.edu/~hbling/code/DD_v1.zip
CodeImage DenoisingK-SVD http://www.cs.technion.ac.il/~ronrubin/Software/ksvdbox13.zip
CodeMultiple Kernel LearningSimpleMKLA. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. Simplemkl. JMRL, 2008http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html
CodeFeature ExtractionPyramids of Histograms of Oriented Gradients (PHOG)A. Bosch, A. Zisserman, and X. Munoz, Representing shape with a spatial pyramid kernel, CIVR, 2007http://www.robots.ox.ac.uk/~vgg/research/caltech/phog/phog.zip
CodeSparse RepresentationEfficient sparse coding algorithmsH. Lee, A. Battle, R. Rajat and A. Y. Ng, Efficient sparse coding algorithms, NIPS 2007http://ai.stanford.edu/~hllee/softwares/nips06-sparsecoding.htm
CodeMulti-View StereoClustering Views for Multi-view StereoY. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, Towards Internet-scale Multi-view Stereo, CVPR 2010http://grail.cs.washington.edu/software/cmvs/
CodeMulti-View StereoMulti-View Stereo EvaluationS. Seitz et al. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, CVPR 2006http://vision.middlebury.edu/mview/
CodeStructure from motionStructure and Motion Toolkit in Matlab http://cms.brookes.ac.uk/staff/PhilipTorr/Code/code_page_4.htm
CodePose EstimationTraining Deformable Models for LocalizationRamanan, D. "Learning to Parse Images of Articulated Bodies." NIPS 2006http://www.ics.uci.edu/~dramanan/papers/parse/index.html
CodeLow-Rank ModelingRASL: Robust Batch Alignment of Images by Sparse and Low-Rank DecompositionY. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, RASL: Robust Batch Alignment of Images by Sparse and Low-Rank Decomposition, CVPR 2010http://perception.csl.uiuc.edu/matrix-rank/rasl.html
CodeDimension ReductionISOMAP http://isomap.stanford.edu/
CodeAlpha MattingLearning-based MattingY. Zheng and C. Kambhamettu, Learning Based Digital Matting, ICCV 2009http://www.mathworks.com/matlabcentral/fileexchange/31412
CodeImage SegmentationNormalized CutJ. Shi and J Malik, Normalized Cuts and Image Segmentation, PAMI, 2000http://www.cis.upenn.edu/~jshi/software/
CodeImage Denoising andStereo MatchingEfficient Belief Propagation for Early VisionP. F. Felzenszwalb and D. P. Huttenlocher, Efficient Belief Propagation for Early Vision, IJCV, 2006http://www.cs.brown.edu/~pff/bp/
CodeSparse RepresentationA Linear Subspace Learning Approach via Sparse CodingL. Zhang, P. Zhu, Q. Hu and D. Zhang, “A Linear Subspace Learning Approach via Sparse Coding,” ICCV 2011http://www4.comp.polyu.edu.hk/~cslzhang/code/LSL_SC.zip
CodeText RecognitionNeocognitron for handwritten digit recognitionK. Fukushima: "Neocognitron for handwritten digit recognition", Neurocomputing, 2003http://visiome.neuroinf.jp/modules/xoonips/detail.php?item_id=375
CodeImage ClassificationSparse Coding for Image ClassificationJ. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image Classification, CVPR, 2009http://www.ifp.illinois.edu/~jyang29/ScSPM.htm
CodeNearest Neighbors MatchingLDAHash: Binary Descriptors for Matching in Large Image DatabasesC. Strecha, A. M. Bronstein, M. M. Bronstein and P. Fua. LDAHash: Improved matching with smaller descriptors, PAMI, 2011.http://cvlab.epfl.ch/research/detect/ldahash/index.php
CodeObject SegmentationClassCut for Unsupervised Class SegmentationB. Alexe, T. Deselaers and V. Ferrari, ClassCut for Unsupervised Class Segmentation, ECCV 2010http://www.vision.ee.ethz.ch/~calvin/classcut/ClassCut-release.zip
CodeImage Quality AssessmentFeature SIMilarity Index http://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm
CodeSaliency DetectionAttention via Information MaximizationN. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2005http://www.cse.yorku.ca/~neil/AIM.zip
CodeImage DenoisingWhat makes a good model of natural images ?Y. Weiss and W. T. Freeman, CVPR 2007http://www.cs.huji.ac.il/~yweiss/BRFOE.zip
CodeImage SegmentationMean-Shift Image Segmentation - Matlab WrapperD. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 2002http://www.wisdom.weizmann.ac.il/~bagon/matlab_code/edison_matlab_interface.tar.gz
CodeObject SegmentationGeodesic Star Convexity for Interactive Image SegmentationV. Gulshan, C. Rother, A. Criminisi, A. Blake and A. Zisserman. Geodesic star convexity for interactive image segmentationhttp://www.robots.ox.ac.uk/~vgg/software/iseg/index.shtml
CodeFeature Detection andFeature ExtractionAffine-SIFTJ.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2009http://www.ipol.im/pub/algo/my_affine_sift/
CodeMRF OptimizationMulti-label optimizationY. Boykov, O. Verksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001http://vision.csd.uwo.ca/code/gco-v3.0.zip
CodeFeature Detection andFeature ExtractionScale-invariant feature transform (SIFT) - Demo SoftwareD. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.http://www.cs.ubc.ca/~lowe/keypoints/
CodeVisual TrackingKLT: An Implementation of the Kanade-Lucas-Tomasi Feature TrackerB. D. Lucas and T. Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981http://www.ces.clemson.edu/~stb/klt/
CodeFeature Detection andFeature ExtractionAffine Covariant FeaturesT. Tuytelaars and K. Mikolajczyk, Local Invariant Feature Detectors: A Survey, Foundations and Trends in Computer Graphics and Vision, 2008http://www.robots.ox.ac.uk/~vgg/research/affine/
CodeImage SegmentationSegmenting Scenes by Matching Image CompositesB. Russell, A. A. Efros, J. Sivic, W. T. Freeman, A. Zisserman, NIPS 2009http://www.cs.washington.edu/homes/bcr/projects/SceneComposites/index.html
CodeImage SegmentationOWT-UCM Hierarchical SegmentationP. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image Segmentation. PAMI, 2011http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
CodeFeature Matching andImage ClassificationThe Pyramid Match: Efficient Matching for Retrieval and RecognitionK. Grauman and T. Darrell. The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features, ICCV 2005http://www.cs.utexas.edu/~grauman/research/projects/pmk/pmk_projectpage.htm
CodeAlpha MattingBayesian MattingY. Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, A Bayesian Approach to Digital Matting, CVPR, 2001http://www1.idc.ac.il/toky/CompPhoto-09/Projects/Stud_projects/Miki/index.html
CodeImage DeblurringRichardson-Lucy Deblurring for Scenes under Projective Motion PathY.-W. Tai, P. Tan, M. S. Brown: Richardson-Lucy Deblurring for Scenes under Projective Motion Path, PAMI 2011http://yuwing.kaist.ac.kr/projects/projectivedeblur/projectivedeblur_files/ProjectiveDeblur.zip
CodePose EstimationArticulated Pose Estimation using Flexible Mixtures of PartsY. Yang, D. Ramanan, Articulated Pose Estimation using Flexible Mixtures of Parts, CVPR 2011http://phoenix.ics.uci.edu/software/pose/
CodeFeature ExtractionBRIEF: Binary Robust Independent Elementary FeaturesM. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV 2010http://cvlab.epfl.ch/research/detect/brief/
CodeFeature ExtractionGlobal and Efficient Self-SimilarityT. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and Detection. CVPR 2010andT. Deselaers, V. Ferrari, Global and Efficient Self-Similarity for Object Classification and Detection, CVPR 2010http://www.vision.ee.ethz.ch/~calvin/gss/selfsim_release1.0.tgz
CodeImage Super-resolutionMulti-frame image super-resolutionPickup, L. C. Machine Learning in Multi-frame Image Super-resolution, PhD thesishttp://www.robots.ox.ac.uk/~vgg/software/SR/index.html
CodeFeature Detection andFeature ExtractionScale-invariant feature transform (SIFT) - LibraryD. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.http://blogs.oregonstate.edu/hess/code/sift/
CodeImage DenoisingClustering-based DenoisingP. Chatterjee and P. Milanfar, Clustering-based Denoising with Locally Learned Dictionaries (K-LLD), TIP, 2009http://users.soe.ucsc.edu/~priyam/K-LLD/
CodeObject RecognitionRecognition by Association via Learning Per-exemplar DistancesT. Malisiewicz, A. A. Efros, Recognition by Association via Learning Per-exemplar Distances, CVPR 2008http://www.cs.cmu.edu/~tmalisie/projects/cvpr08/dfuns.tar.gz
CodeVisual TrackingSuperpixel TrackingS. Wang, H. Lu, F. Yang, and M.-H. Yang, Superpixel Tracking, ICCV 2011http://faculty.ucmerced.edu/mhyang/papers/iccv11a.html
CodeSparse RepresentationSPArse Modeling SoftwareJ. Mairal, F. Bach, J. Ponce and G. Sapiro. Online Learning for Matrix Factorization and Sparse Coding, JMLR 2010http://www.di.ens.fr/willow/SPAMS/
CodeSaliency DetectionSaliency detection: A spectral residual approachX. Hou and L. Zhang. Saliency detection: A spectral residual approach. CVPR, 2007http://www.klab.caltech.edu/~xhou/projects/spectralResidual/spectralresidual.html
CodeImage FilteringGuided Image FilteringK. He, J. Sun, X. Tang, Guided Image Filtering, ECCV 2010http://personal.ie.cuhk.edu.hk/~hkm007/eccv10/guided-filter-code-v1.rar
CodeKernels and DistancesFast Directional Chamfer Matching http://www.umiacs.umd.edu/~mingyliu/src/fdcm_matlab_wrapper_v0.2.zip
CodeVisual TrackingL1 TrackingX. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009http://www.dabi.temple.edu/~hbling/code_data.htm
CodeObject ProposalRegion-based Object ProposalI. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010http://vision.cs.uiuc.edu/proposals/
CodeObject DetectionEnsemble of Exemplar-SVMs for Object Detection and BeyondT. Malisiewicz, A. Gupta, A. A. Efros, Ensemble of Exemplar-SVMs for Object Detection and Beyond , ICCV 2011http://www.cs.cmu.edu/~tmalisie/projects/iccv11/
CodeDimension ReductionDimensionality Reduction Toolbox http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
CodeObject DetectionViola-Jones Object DetectionP. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple Features, CVPR, 2001http://pr.willowgarage.com/wiki/FaceDetection
CodeObject DetectionImplicit Shape ModelB. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and Segmentation, IJCV, 2008http://www.vision.ee.ethz.ch/~bleibe/code/ism.html
CodeSaliency DetectionSaliency detection using maximum symmetric surroundR. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010http://ivrg.epfl.ch/supplementary_material/RK_ICIP2010/index.html
CodeImage FilteringFast Bilateral FilterS. Paris and F. Durand, A Fast Approximation of the Bilateral Filter using a Signal Processing Approach, ECCV, 2006http://people.csail.mit.edu/sparis/bf/
CodeMachine LearningFastICA package for MATLABhttp://research.ics.tkk.fi/ica/book/http://research.ics.tkk.fi/ica/fastica/
CodeFeature Detection andFeature ExtractionMaximally stable extremal regions (MSER)J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002http://www.robots.ox.ac.uk/~vgg/research/affine/
CodeStructure from motionBundlerN. Snavely, S M. Seitz, R Szeliski. Photo Tourism: Exploring image collections in 3D. SIGGRAPH 2006http://phototour.cs.washington.edu/bundler/
CodeVisual TrackingOnline Discriminative Object Tracking with Local Sparse RepresentationQ. Wang, F. Chen, W. Xu, and M.-H. Yang, Online Discriminative Object Tracking with Local Sparse Representation, WACV 2012http://faculty.ucmerced.edu/mhyang/code/wacv12a_code.zip
CodeAlpha MattingClosed Form MattingA. Levin D. Lischinski and Y. Weiss. A Closed Form Solution to Natural Image Matting, PAMI 2008.http://people.csail.mit.edu/alevin/matting.tar.gz
CodeImage FilteringGradientShopP. Bhat, C.L. Zitnick, M. Cohen, B. Curless, and J. Kim, GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering, TOG 2010http://grail.cs.washington.edu/projects/gradientshop/
CodeVisual TrackingIncremental Learning for Robust Visual TrackingD. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual Tracking, IJCV 2007http://www.cs.toronto.edu/~dross/ivt/
CodeFeature Detection andFeature ExtractionColor DescriptorK. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, PAMI, 2010http://koen.me/research/colordescriptors/
CodeImage SegmentationEntropy Rate Superpixel SegmentationM.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR 2011http://www.umiacs.umd.edu/~mingyliu/src/ers_matlab_wrapper_v0.1.zip
CodeImage FilteringDomain TransformationE. Gastal, M. Oliveira, Domain Transform for Edge-Aware Image and Video Processing, SIGGRAPH 2011http://inf.ufrgs.br/~eslgastal/DomainTransform/DomainTransformFilters-Source-v1.0.zip
CodeMultiple Kernel LearningOpenKernel.orgF. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011http://www.openkernel.org/
CodeImage SegmentationEfficient Graph-based Image Segmentation - Matlab WrapperP. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation, IJCV 2004http://www.mathworks.com/matlabcentral/fileexchange/25866-efficient-graph-based-image-segmentation
CodeImage SegmentationBiased Normalized CutS. Maji, N. Vishnoi and J. Malik, Biased Normalized Cut, CVPR 2011http://www.cs.berkeley.edu/~smaji/projects/biasedNcuts/
CodeStereoConstant-Space Belief PropagationQ. Yang, L. Wang, and N. Ahuja, A Constant-Space Belief Propagation Algorithm for Stereo Matching, CVPR 2010http://www.cs.cityu.edu.hk/~qiyang/publications/code/cvpr-10-csbp/csbp.htm
CodeFeature Detection andFeature ExtractionSpeeded Up Robust Feature (SURF) - Open SURFH. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006http://www.chrisevansdev.com/computer-vision-opensurf.html
CodeVisual TrackingOnline boosting trackersH. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR, 2006http://www.vision.ee.ethz.ch/boostingTrackers/
CodeImage DenoisingSparsity-based Image DenoisingW. Dong, X. Li, L. Zhang and G. Shi, Sparsity-based Image Denoising vis Dictionary Learning and Structural Clustering, CVPR, 2011http://www.csee.wvu.edu/~xinl/CSR.html
CodeFeature Detection andFeature ExtractionScale-invariant feature transform (SIFT) - VLFeatD. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.http://www.vlfeat.org/
CodeClusteringSpectral Clustering - UW Project http://www.stat.washington.edu/spectral/
CodeImage DeblurringAnalyzing spatially varying blurA. Chakrabarti, T. Zickler, and W. T. Freeman, Analyzing Spatially-varying Blur, CVPR 2010http://www.eecs.harvard.edu/~ayanc/svblur/
CodeMultiple Instance LearningDD-SVMYixin Chen and James Z. Wang, Image Categorization by Learning and Reasoning with Regions, JMLR 2004 
CodeFeature ExtractionGIST DescriptorA. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope, IJCV, 2001http://people.csail.mit.edu/torralba/code/spatialenvelope/
CodeImage ClassificationTexture ClassificationM. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005http://www.robots.ox.ac.uk/~vgg/research/texclass/index.html
CodeStructure from motionNonrigid Structure From Motion in Trajectory Space http://cvlab.lums.edu.pk/nrsfm/index.html
CodeAlpha MattingShared MattingE. S. L. Gastal and M. M. Oliveira, Computer Graphics Forum, 2010http://www.inf.ufrgs.br/~eslgastal/SharedMatting/
CodeAction Recognition3D Gradients (HOG3D)A. Klaser, M. Marszałek, and C. Schmid, BMVC, 2008.http://lear.inrialpes.fr/people/klaeser/research_hog3d
CodeImage DenoisingKernel Regressions http://www.soe.ucsc.edu/~htakeda/MatlabApp/KernelRegressionBasedImageProcessingToolBox_ver1-1beta.zip
CodeFeature DetectionBoundary Preserving Dense Local RegionsJ. Kim and K. Grauman, Boundary Preserving Dense Local Regions, CVPR 2011http://vision.cs.utexas.edu/projects/bplr/bplr.html
CodeImage UnderstandingSuperParsingJ. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image Parsing with Superpixels, ECCV 2010http://www.cs.unc.edu/~jtighe/Papers/ECCV10/eccv10-jtighe-code.zip
CodeImage FilteringWeighted Least Squares FilterZ. Farbman, R. Fattal, D. Lischinski, R. Szeliski, Edge-Preserving Decompositions for Multi-Scale Tone and Detail Manipulation, SIGGRAPH 2008http://www.cs.huji.ac.il/~danix/epd/
CodeImage Super-resolutionSingle-Image Super-Resolution Matlab PackageR. Zeyde, M. Elad, and M. Protter, On Single Image Scale-Up using Sparse-Representations, LNCS 2010http://www.cs.technion.ac.il/~elad/Various/Single_Image_SR.zip
CodeImage UnderstandingBlocks World Revisited: Image Understanding using Qualitative Geometry and MechanicsA. Gupta, A. A. Efros, M. Hebert, Blocks World Revisited: Image Understanding using Qualitative Geometry and Mechanics, ECCV 2010http://www.cs.cmu.edu/~abhinavg/blocksworld/#downloads
CodeFeature ExtractionShape ContextS. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contexts, PAMI, 2002http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html
CodeImage Processing andImage FilteringPiotr's Image & Video Matlab ToolboxPiotr Dollar, Piotr's Image & Video Matlab Toolbox, http://vision.ucsd.edu/~pdollar/toolbox/doc/index.htmlhttp://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
CodeIllumination, Reflectance, and ShadowWebcam Clip Art: Appearance and Illuminant Transfer from Time-lapse SequencesJ-F. Lalonde, A. A. Efros, S. G. Narasimhan, Webcam Clip Art: Appearance and Illuminant Transfer from Time-lapse Sequences, SIGGRAPH Asia 2009http://www.cs.cmu.edu/~jlalonde/software.html#skyModel
CodePose EstimationCalvin Upper-Body DetectorE. Marcin, F. Vittorio, Better Appearance Models for Pictorial Structures, BMVC 2009http://www.vision.ee.ethz.ch/~calvin/calvin_upperbody_detector/
CodeImage ClassificationLocality-constrained Linear CodingJ. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image Classification, CVPR, 2010http://www.ifp.illinois.edu/~jyang29/LLC.htm
CodeFeature Detection andFeature ExtractionSpeeded Up Robust Feature (SURF) - Matlab WrapperH. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006http://www.maths.lth.se/matematiklth/personal/petter/surfmex.php
CodePose EstimationEstimating Human Pose from Occluded ImagesJ.-B. Huang and M.-H. Yang, Estimating Human Pose from Occluded Images, ACCV 2009http://faculty.ucmerced.edu/mhyang/code/accv09_pose.zip
CodeStructure from motionOpenSourcePhotogrammetry http://opensourcephotogrammetry.blogspot.com/
CodeImage ClassificationSpatial Pyramid MatchingS. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, CVPR 2006http://www.cs.unc.edu/~lazebnik/research/SpatialPyramid.zip
CodeNearest Neighbors MatchingCoherency Sensitive HashingS. Korman, S. Avidan, Coherency Sensitive Hashing, ICCV 2011http://www.eng.tau.ac.il/~simonk/CSH/index.html
CodeImage SegmentationSegmentation by Minimum Code LengthA. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2007http://perception.csl.uiuc.edu/coding/image_segmentation/
CodeSaliency DetectionFrequency-tuned salient region detectionR. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/index.html
CodeMRF OptimizationMax-flow/min-cut for shape fittingV. Lempitsky and Y. Boykov, Global Optimization for Shape Fitting, CVPR 2007http://www.csd.uwo.ca/faculty/yuri/Implementations/TouchExpand.zip
CodeFeature DetectionCanny Edge DetectionJ. Canny, A Computational Approach To Edge Detection, PAMI, 1986http://www.mathworks.com/help/toolbox/images/ref/edge.html
CodeObject DetectionMultiple KernelsA. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object Detection. ICCV, 2009http://www.robots.ox.ac.uk/~vgg/software/MKL/
CodeImage SegmentationMean-Shift Image Segmentation - EDISOND. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 2002http://coewww.rutgers.edu/riul/research/code/EDISON/index.html
CodeImage Quality AssessmentDegradation Model http://users.ece.utexas.edu/~bevans/papers/2000/imageQuality/index.html
CodeObject DetectionEnsemble of Exemplar-SVMsT. Malisiewicz, A. Gupta, A. Efros. Ensemble of Exemplar-SVMs for Object Detection and Beyond . ICCV, 2011http://www.cs.cmu.edu/~tmalisie/projects/iccv11/
CodeImage DeblurringRadon TransformT. S. Cho, S. Paris, B. K. P. Horn, W. T. Freeman, Blur kernel estimation using the radon transform, CVPR 2011http://people.csail.mit.edu/taegsang/Documents/RadonDeblurringCode.zip
CodeImage DeblurringEficient Marginal Likelihood Optimization in Blind DeconvolutionA. Levin, Y. Weiss, F. Durand, W. T. Freeman. Efficient Marginal Likelihood Optimization in Blind Deconvolution, CVPR 2011http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR2011Code.zip
CodeFeature DetectionFAST Corner DetectionE. Rosten and T. Drummond, Machine learning for high-speed corner detection, ECCV, 2006http://www.edwardrosten.com/work/fast.html
CodeImage Super-resolutionMDSP Resolution Enhancement SoftwareS. Farsiu, D. Robinson, M. Elad, and P. Milanfar, Fast and Robust Multi-frame Super-resolution, TIP 2004http://users.soe.ucsc.edu/~milanfar/software/superresolution.html
CodeFeature Extraction andObject DetectionHistogram of Oriented Graidents - INRIA Object Localization ToolkitN. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005http://www.navneetdalal.com/software
CodeVisual TrackingGlobally-Optimal Greedy Algorithms for Tracking a Variable Number of ObjectsH. Pirsiavash, D. Ramanan, C. Fowlkes. "Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects, CVPR 2011http://www.ics.uci.edu/~hpirsiav/papers/tracking_cvpr11_release_v1.0.tar.gz
CodeSaliency DetectionSegmenting salient objects from images and videosE. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videos. CVPR, 2010http://www.cse.oulu.fi/MVG/Downloads/saliency
CodeVisual TrackingObject TrackingA. Yilmaz, O. Javed and M. Shah, Object Tracking: A Survey, ACM Journal of Computing Surveys, Vol. 38, No. 4, 2006http://plaza.ufl.edu/lvtaoran/object%20tracking.htm
CodeMachine LearningBoosting Resources by Liangliang Caohttp://www.ifp.illinois.edu/~cao4/reading/boostingbib.htmhttp://www.ifp.illinois.edu/~cao4/reading/boostingbib.htm
CodeMachine LearningNetlab Neural Network SoftwareC. M. Bishop, Neural Networks for Pattern RecognitionㄝOxford University Press, 1995http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
CodeOptical FlowClassical Variational Optical FlowT. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, ECCV 2004http://lmb.informatik.uni-freiburg.de/resources/binaries/
CodeSparse RepresentationCentralized Sparse Representation for Image RestorationW. Dong, L. Zhang and G. Shi, “Centralized Sparse Representation for Image Restoration,” ICCV 2011http://www4.comp.polyu.edu.hk/~cslzhang/code/CSR_IR.zip
CourseComputer VisionIntroduction to Computer Vision, Stanford University, Winter 2010-2011Fei-Fei Lihttp://vision.stanford.edu/teaching/cs223b/
CourseComputer VisionComputer Vision: From 3D Reconstruction to Visual Recognition, Fall 2012Silvio Savarese and Fei-Fei Lihttps://www.coursera.org/course/computervision
CourseComputer VisionComputer Vision, University of Texas at Austin, Spring 2011Kristen Graumanhttp://www.cs.utexas.edu/~grauman/courses/spring2011/index.html
CourseComputer VisionLearning-Based Methods in Vision, CMU, Spring 2012Alexei “Alyosha” Efros and Leonid Sigalhttps://docs.google.com/document/pub?id=1jGBn7zPDEaU33fJwi3YI_usWS-U6gpSSJotV_2gDrL0
CourseVisual RecognitionVisual Recognition, University of Texas at Austin, Fall 2011Kristen Graumanhttp://www.cs.utexas.edu/~grauman/courses/fall2011/schedule.html
CourseComputer VisionIntroduction to Computer VisionJames Hays, Brown University, Fall 2011http://www.cs.brown.edu/courses/cs143/
CourseComputer VisionComputer Vision, University of North Carolina at Chapel Hill, Spring 2010Svetlana Lazebnikhttp://www.cs.unc.edu/~lazebnik/spring10/
CourseComputer VisionComputer Vision: The Fundamentals, University of California at Berkeley, Fall 2012Jitendra Malikhttps://www.coursera.org/course/vision
CourseComputational PhotographyComputational Photography, University of Illinois, Urbana-Champaign, Fall 2011Derek Hoiemhttp://www.cs.illinois.edu/class/fa11/cs498dh/
CourseGraphical ModelsInference in Graphical Models, Stanford University, Spring 2012Andrea Montanari, Stanford Universityhttp://www.stanford.edu/~montanar/TEACHING/Stat375/stat375.html
CourseComputer VisionComputer Vision, New York University, Fall 2012Rob Fergushttp://cs.nyu.edu/~fergus/teaching/vision_2012/index.html
CourseComputer VisionAdvances in Computer VisionAntonio Torralba, MIT, Spring 2010http://groups.csail.mit.edu/vision/courses/6.869/
CourseComputer VisionComputer Vision, University of Illinois, Urbana-Champaign, Spring 2012Derek Hoiemhttp://www.cs.illinois.edu/class/sp12/cs543/
CourseComputational PhotographyComputational Photography, CMU, Fall 2011Alexei “Alyosha” Efroshttp://graphics.cs.cmu.edu/courses/15-463/2011_fall/463.html
CourseComputer VisionComputer Vision, University of Washington, Winter 2012Steven Seitzhttp://www.cs.washington.edu/education/courses/cse455/12wi/
LinkSource codeSource Code Collection for Reproducible Researchcollected by Xin Li, Lane Dept of CSEE, West Virginia Universityhttp://www.csee.wvu.edu/~xinl/reproducible_research.html
LinkComputer VisionComputer Image Analysis, Computer Vision ConferencesUSChttp://iris.usc.edu/information/Iris-Conferences.html
LinkComputer VisionCV Papers on the webCVPapershttp://www.cvpapers.com/index.html
LinkComputer VisionCVonlineCVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Visionhttp://homepages.inf.ed.ac.uk/rbf/CVonline/
LinkDatasetCompiled list of recognition datasetscompiled by Kristen Graumanhttp://www.cs.utexas.edu/~grauman/courses/spring2008/datasets.htm
LinkComputer VisionAnnotated Computer Vision Bibliographycompiled by Keith Pricehttp://iris.usc.edu/Vision-Notes/bibliography/contents.html
LinkComputer VisionThe Computer Vision homepage http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html
LinkComputer Vision IndustryThe Computer Vision IndustryDavid Lowehttp://www.cs.ubc.ca/~lowe/vision.html
LinkSource codeComputer Vision Algorithm ImplementationsCVPapershttp://www.cvpapers.com/rr.html
LinkComputer VisionCV Datasets on the webCVPapershttp://www.cvpapers.com/datasets.html
TalkVisual RecognitionUnderstanding Visual ScenesAntonio Torralba, MIThttp://videolectures.net/nips09_torralba_uvs/
TalkNeuroscienceLearning in Hierarchical Architectures: from Neuroscience to Derived KernelsTomaso A. Poggio, McGovern Institute for Brain Research, Massachusetts Institute of Technologyhttp://videolectures.net/mlss09us_poggio_lhandk/
TalkDeep LearningA tutorial on Deep LearningGeoffrey E. Hinton, Department of Computer Science, University of Torontohttp://videolectures.net/jul09_hinton_deeplearn/
TalkBoostingTheory and Applications of BoostingRobert Schapire, Department of Computer Science, Princeton Universityhttp://videolectures.net/mlss09us_schapire_tab/
TalkGraphical ModelsGraphical Models and message-passing algorithmsMartin J. Wainwright, University of California at Berkeleyhttp://videolectures.net/mlss2011_wainwright_messagepassing/
TalkStatistical Learning TheoryStatistical Learning TheoryJohn Shawe-Taylor, Centre for Computational Statistics and Machine Learning, University College Londonhttp://videolectures.net/mlss04_taylor_slt/
TalkGaussian ProcessGaussian Process BasicsDavid MacKay, University of Cambridgehttp://videolectures.net/gpip06_mackay_gpb/
TalkInformation TheoryInformation TheoryDavid MacKay, University of Cambridgehttp://videolectures.net/mlss09uk_mackay_it/
TalkOptimizationOptimization Algorithms in Machine LearningStephen J. Wright, Computer Sciences Department, University of Wisconsin - Madisonhttp://videolectures.net/nips2010_wright_oaml/
TalkBayesian InferenceIntroduction To Bayesian InferenceChristopher Bishop, Microsoft Researchhttp://videolectures.net/mlss09uk_bishop_ibi/
TalkBayesian NonparametricsModern Bayesian NonparametricsPeter Orbanz and Yee Whye Tehhttp://www.youtube.com/watch?v=F0_ih7THV94&feature=relmfu
TalkKernels and DistancesMachine learning and kernel methods for computer visionFrancis R. Bach, INRIAhttp://videolectures.net/etvc08_bach_mlakm/
TalkOptimizationConvex OptimizationLieven Vandenberghe, Electrical Engineering Department, University of California, Los Angeleshttp://videolectures.net/mlss2011_vandenberghe_convex/
TalkOptimizationEnergy Minimization with Label costs and Applications in Multi-Model FittingYuri Boykov, Department of Computer Science, University of Western Ontariohttp://videolectures.net/nipsworkshops2010_boykov_eml/
TalkObject DetectionObject Recognition with Deformable ModelsPedro Felzenszwalb, Brown Universityhttp://www.youtube.com/watch?v=_J_clwqQ4gI
TalkLow-level visionLearning and Inference in Low-Level VisionYair Weiss, School of Computer Science and Engineering, The Hebrew University of Jerusalemhttp://videolectures.net/nips09_weiss_lil/
Talk3D Computer Vision3D Computer Vision: Past, Present, and FutureSteven Seitz, University of Washington, Google Tech Talk, 2011http://www.youtube.com/watch?v=kyIzMr917Rc
TalkOptimizationWho is Afraid of Non-Convex Loss Functions?Yann LeCun, New York Universityhttp://videolectures.net/eml07_lecun_wia/
TalkSparse RepresentationSparse Methods for Machine Learning: Theory and AlgorithmsFrancis R. Bach, INRIAhttp://videolectures.net/nips09_bach_smm/
TalkOptimization and Support Vector MachinesOptimization Algorithms in Support Vector MachinesStephen J. Wright, Computer Sciences Department, University of Wisconsin - Madisonhttp://videolectures.net/mlss09us_wright_oasvm/
TalkInformation TheoryInformation Theory in Learning and ControlNaftali (Tali) Tishby, The Hebrew Universityhttp://www.youtube.com/watch?v=GKm53xGbAOk&feature=relmfu
TalkRelative EntropyRelative EntropySergio Verdu, Princeton Universityhttp://videolectures.net/nips09_verdu_re/
TutorialObject DetectionGeometry constrained parts based detectionSimon Lucey, Jason Saragih, ICCV 2011 Tutorialhttp://ci2cv.net/tutorials/iccv-2011/
TutorialGraphical ModelsLearning with inference for discrete graphical modelsNikos Komodakis, Pawan Kumar, Nikos Paragios, Ramin Zabih, ICCV 2011 Tutorialhttp://www.csd.uoc.gr/~komod/ICCV2011_tutorial/
TutorialVariational CalculusVariational methods for computer visionDaniel Cremers, Bastian Goldlucke, Thomas Pock, ICCV 2011 Tutorialhttp://cvpr.in.tum.de/tutorials/iccv2011
Tutorial3D perceptionComputer Vision and 3D Perception for RoboticsRadu Bogdan Rusu, Gary Bradski, Caroline Pantofaru, Stefan Hinterstoisser, Stefan Holzer, Kurt Konolige and Andrea Vedaldi, ECCV 2010 Tutorialhttp://www.willowgarage.com/workshops/2010/eccv
TutorialAction RecognitionLooking at people: The past, the present and the futureL. Sigal, T. Moeslund, A. Hilton, V. Kruger, ICCV 2011 Tutorialhttp://www.cs.brown.edu/~ls/iccv2011tutorial.html
TutorialNon-linear Least SquaresComputer vision fundamentals: robust non-linear least-squares and their applicationsPascal Fua, Vincent Lepetit, ICCV 2011 Tutorialhttp://cvlab.epfl.ch/~fua/courses/lsq/
TutorialAction RecognitionFrontiers of Human Activity AnalysisJ. K. Aggarwal, Michael S. Ryoo, and Kris Kitani, CVPR 2011 Tutorialhttp://cvrc.ece.utexas.edu/mryoo/cvpr2011tutorial/
TutorialStructured PredictionStructured Prediction and Learning in Computer VisionS. Nowozin and C. Lampert, CVPR 2011 Tutorialhttp://www.nowozin.net/sebastian/cvpr2011tutorial/
TutorialAction RecognitionStatistical and Structural Recognition of Human ActionsIvan Laptev and Greg Mori, ECCV 2010 Tutorialhttps://sites.google.com/site/humanactionstutorialeccv10/
TutorialComputational SymmetryComputational Symmetry: Past, Current, FutureYanxi Liu, ECCV 2010 Tutorialhttp://vision.cse.psu.edu/research/symmComp/index.shtml
TutorialMatlabMatlab TutorialDavid Kriegman and Serge Belongiehttp://www.cs.unc.edu/~lazebnik/spring10/matlab.intro.html
TutorialMatlabWriting Fast MATLAB CodePascal Getreuer, Yale Universityhttp://www.mathworks.com/matlabcentral/fileexchange/5685
TutorialSpectral ClusteringA Tutorial on Spectral ClusteringUlrike von Luxburg, Max Planck Institute for Biological Cyberneticshttp://web.mit.edu/~wingated/www/introductions/tutorial_on_spectral_clustering.pdf
TutorialFeature Learning, Image ClassificationFeature Learning for Image ClassificationKai Yu and Andrew Ng, ECCV 2010 Tutorialhttp://ufldl.stanford.edu/eccv10-tutorial/
TutorialShape Analysis, Diffusion GeometryDiffusion Geometry Methods in Shape AnalysisA. Brontein and M. Bronstein, ECCV 2010 Tutorialhttp://tosca.cs.technion.ac.il/book/course_eccv10.html
TutorialGraphical ModelsGraphical Models, Exponential Families, and Variational InferenceMartin J. Wainwright and Michael I. Jordan, University of California at Berkeleyhttp://www.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
TutorialColor Image ProcessingColor image understanding: from acquisition to high-level image understandingTheo Gevers, Keigo Hirakawa, Joost van de Weijer, ICCV 2011 Tutorialhttp://www.cat.uab.cat/~joost/tutorial_iccv.html
TutorialStructure from motionNonrigid Structure from MotionY. Sheikh and Sohaib Khan, ECCV 2010 Tutorialhttp://www.cs.cmu.edu/~yaser/ECCV2010Tutorial.html
TutorialExpectation MaximizationA Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov ModelsJeff A. Bilmes, University of California at Berkeleyhttp://crow.ee.washington.edu/people/bulyko/papers/em.pdf
TutorialDecision ForestsDecision forests for classification, regression, clustering and density estimationA. Criminisi, J. Shotton and E. Konukoglu, ICCV 2011 Tutorialhttp://research.microsoft.com/en-us/groups/vision/decisionforests.aspx
Tutorial3D point cloud processing3D point cloud processing: PCL (Point Cloud Library)R. Rusu, S. Holzer, M. Dixon, V. Rabaud, ICCV 2011 Tutorialhttp://www.pointclouds.org/media/iccv2011.html
TutorialImage RegistrationTools and Methods for Image RegistrationBrown, G. Carneiro, A. A. Farag, E. Hancock, A. A. Goshtasby (Organizer), J. Matas, J.M. Morel, N. S. Netanyahu, F. Sur, and G. Yu, CVPR 2011 Tutorialhttp://www.imgfsr.com/CVPR2011/Tutorial6/
TutorialNon-rigid registrationNon-rigid registration and reconstructionAlessio Del Bue, Lourdes Agapito, Adrien Bartoli, ICCV 2011 Tutorialhttp://www.isr.ist.utl.pt/~adb/tutorial/
TutorialVariational CalculusVariational Methods in Computer VisionD. Cremers, B. Goldlücke, T. Pock, ECCV 2010 Tutorialhttp://cvpr.cs.tum.edu/tutorials/eccv2010
TutorialDistance Metric LearningDistance Functions and Metric LearningM. Werman, O. Pele and B. Kulis, ECCV 2010 Tutorialhttp://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/
TutorialFeature ExtractionImage and Video Description with Local Binary Pattern VariantsM. Pietikainen and J. Heikkila, CVPR 2011 Tutorialhttp://www.ee.oulu.fi/research/imag/mvg/files/pdf/CVPR-tutorial-final.pdf
TutorialGame TheoryGame Theory in Computer Vision and Pattern RecognitionMarcello Pelillo and Andrea Torsello, CVPR 2011 Tutorialhttp://www.dsi.unive.it/~atorsell/cvpr2011tutorial/
TutorialComputational ImagingFcam: an architecture and API for computational camerasKari Pulli, Andrew Adams, Timo Ahonen, Marius Tico, ICCV 2011 Tutorialhttp://fcam.garage.maemo.org/iccv2011.html
 
 

Other useful links (dataset, lectures, and other softwares)

Conference Information

Papers

Datasets

Lectures

Source Codes

Patents

Source Codes

UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下:


 
 
 
TypeTopicNameReferenceLink
CodeStructure from motionlibmv http://code.google.com/p/libmv/
CodeDimension ReductionLLE http://www.cs.nyu.edu/~roweis/lle/code.html
CodeClusteringSpectral Clustering - UCSD Project http://vision.ucsd.edu/~sagarwal/spectral-0.2.tgz
CodeClusteringK-Means 323个Item- Oxford Code http://www.cs.ucf.edu/~vision/Code/vggkmeans.zip
CodeImage DeblurringNon-blind deblurring (and blind denoising) with integrated noise estimationU. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring with integrated noise estimation, CVPR 2011http://www.gris.tu-darmstadt.de/research/visinf/software/index.en.htm
CodeStructure from motionStructure from Motion toolbox for Matlab by Vincent Rabaud http://code.google.com/p/vincents-structure-from-motion-matlab-toolbox/
CodeMultiple View GeometryMatlab Functions for Multiple View Geometry http://www.robots.ox.ac.uk/~vgg/hzbook/code/
CodeObject DetectionMax-Margin Hough TransformS. Maji and J. Malik, Object Detection Using a Max-Margin Hough Transform. CVPR 2009http://www.cs.berkeley.edu/~smaji/projects/max-margin-hough/
CodeImage SegmentationSLIC SuperpixelsR. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html
CodeVisual TrackingTracking using Pixel-Wise PosteriorsC. Bibby and I. Reid, Tracking using Pixel-Wise Posteriors, ECCV 2008http://www.robots.ox.ac.uk/~cbibby/research_pwp.shtml
CodeVisual TrackingVisual Tracking with Histograms and Articulating BlocksS. M. Shshed Nejhum, J. Ho, and M.-H.Yang, Visual Tracking with Histograms and Articulating Blocks, CVPR 2008http://www.cise.ufl.edu/~smshahed/tracking.htm
CodeSparse RepresentationRobust Sparse Coding for Face RecognitionM. Yang, L. Zhang, J. Yang and D. Zhang, “Robust Sparse Coding for Face Recognition,” CVPR 2011http://www4.comp.polyu.edu.hk/~cslzhang/code/RSC.zip
CodeFeature Detection andFeature ExtractionGroups of Adjacent Contour SegmentsV. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, Groups of Adjacent Contour Segments for Object Detection, PAMI, 2007http://www.robots.ox.ac.uk/~vgg/share/ferrari/release-kas-v102.tgz
CodeDensity EstimationKernel Density Estimation Toolbox http://www.ics.uci.edu/~ihler/code/kde.html
CodeIllumination, Reflectance, and ShadowGround shadow detectionJ.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer Photographs, ECCV 2010http://www.jflalonde.org/software.html#shadowDetection
CodeImage Denoising,Image Super-resolution, andImage DeblurringLearning Models of Natural Image PatchesD. Zoran and Y. Weiss, From Learning Models of Natural Image Patches to Whole Image Restoration, ICCV, 2011http://www.cs.huji.ac.il/~daniez/
CodeIllumination, Reflectance, and ShadowEstimating Natural Illumination from a Single Outdoor ImageJ-F. Lalonde, A. A. Efros, S. G. Narasimhan, Estimating Natural Illumination from a Single Outdoor Image , ICCV 2009http://www.cs.cmu.edu/~jlalonde/software.html#skyModel
CodeVisual TrackingLucas-Kanade affine template trackingS. Baker and I. Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, IJCV 2002http://www.mathworks.com/matlabcentral/fileexchange/24677-lucas-kanade-affine-template-tracking
CodeSaliency DetectionSaliency-based video segmentationK. Fukuchi, K. Miyazato, A. Kimura, S. Takagi and J. Yamato, Saliency-based video segmentation with graph cuts and sequentially updated priors, ICME 2009http://www.brl.ntt.co.jp/people/akisato/saliency3.html
CodeDimension ReductionLaplacian Eigenmaps http://www.cse.ohio-state.edu/~mbelkin/algorithms/Laplacian.tar
CodeIllumination, Reflectance, and ShadowWhat Does the Sky Tell Us About the Camera?J-F. Lalonde, S. G. Narasimhan, A. A. Efros, What Does the Sky Tell Us About the Camera?, ECCV 2008http://www.cs.cmu.edu/~jlalonde/software.html#skyModel
CodeImage FilteringSVM for Edge-Preserving FilteringQ. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering, CVPR 2010http://vision.ai.uiuc.edu/~qyang6/publications/code/cvpr-10-svmbf/program_video_conferencing.zip
CodeImage SegmentationRecovering Occlusion Boundaries from a Single ImageD. Hoiem, A. Stein, A. A. Efros, M. Hebert, Recovering Occlusion Boundaries from a Single Image, ICCV 2007.http://www.cs.cmu.edu/~dhoiem/software/
CodeVisual TrackingVisual Tracking DecompositionJ Kwon and K. M. Lee, Visual Tracking Decomposition, CVPR 2010http://cv.snu.ac.kr/research/~vtd/
CodeVisual TrackingGPU Implementation of Kanade-Lucas-Tomasi Feature TrackerS. N Sinha, J.-M. Frahm, M. Pollefeys and Y. Genc, Feature Tracking and Matching in Video Using Programmable Graphics Hardware, MVA, 2007http://cs.unc.edu/~ssinha/Research/GPU_KLT/
CodeObject DetectionRecognition using regionsC. Gu, J. J. Lim, P. Arbelaez, and J. Malik, CVPR 2009http://www.cs.berkeley.edu/~chunhui/publications/cvpr09_v2.zip
CodeSaliency DetectionSaliency Using Natural statisticsL. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statistics. Journal of Vision, 2008http://cseweb.ucsd.edu/~l6zhang/
CodeImage FilteringLocal Laplacian FiltersS. Paris, S. Hasinoff, J. Kautz, Local Laplacian Filters: Edge-Aware Image Processing with a Laplacian Pyramid, SIGGRAPH 2011http://people.csail.mit.edu/sparis/publi/2011/siggraph/matlab_source_code.zip
CodeCommon Visual Pattern DiscoverySketching the CommonS. Bagon, O. Brostovsky, M. Galun and M. Irani, Detecting and Sketching the Common, CVPR 2010http://www.wisdom.weizmann.ac.il/~bagon/matlab_code/SketchCommonCVPR10_v1.1.tar.gz
CodeImage DenoisingBLS-GSM http://decsai.ugr.es/~javier/denoise/
CodeCamera CalibrationEpipolar Geometry ToolboxG.L. Mariottini, D. Prattichizzo, EGT: a Toolbox for Multiple View Geometry and Visual Servoing, IEEE Robotics & Automation Magazine, 2005http://egt.dii.unisi.it/
CodeDepth SensorKinect SDKhttp://www.microsoft.com/en-us/kinectforwindows/http://www.microsoft.com/en-us/kinectforwindows/
CodeImage Super-resolutionSelf-Similarities for Single Frame Super-ResolutionC.-Y. Yang, J.-B. Huang, and M.-H. Yang, Exploiting Self-Similarities for Single Frame Super-Resolution, ACCV 2010https://eng.ucmerced.edu/people/cyang35/ACCV10.zip
CodeImage DenoisingGaussian Field of Experts http://www.cs.huji.ac.il/~yweiss/BRFOE.zip
CodeObject DetectionPoseletL. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations, ICCV 2009http://www.eecs.berkeley.edu/~lbourdev/poselets/
CodeKernels and DistancesEfficient Earth Mover's Distance with L1 Ground Distance (EMD_L1)H. Ling and K. Okada, An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison, PAMI 2007http://www.dabi.temple.edu/~hbling/code/EmdL1_v3.zip
CodeNearest Neighbors MatchingSpectral HashingY. Weiss, A. Torralba, R. Fergus, Spectral Hashing, NIPS 2008http://www.cs.huji.ac.il/~yweiss/SpectralHashing/
CodeImage DenoisingField of Experts http://www.cs.brown.edu/~roth/research/software.html
CodeImage SegmentationMultiscale Segmentation TreeE. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,” ACCV 2009 andN. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996http://vision.ai.uiuc.edu/segmentation
CodeMultiple Instance LearningMILISZ. Fu, A. Robles-Kelly, and J. Zhou, MILIS: Multiple instance learning with instance selection, PAMI 2010 
CodeNearest Neighbors MatchingFLANN: Fast Library for Approximate Nearest Neighbors http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
CodeFeature Detection andFeature ExtractionMaximally stable extremal regions (MSER) - VLFeatJ. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002http://www.vlfeat.org/
CodeAlpha MattingSpectral MattingA. Levin, A. Rav-Acha, D. Lischinski. Spectral Matting. PAMI 2008http://www.vision.huji.ac.il/SpectralMatting/
CodeMulti-View StereoPatch-based Multi-view Stereo SoftwareY. Furukawa and J. Ponce, Accurate, Dense, and Robust Multi-View Stereopsis, PAMI 2009http://grail.cs.washington.edu/software/pmvs/
CodeClusteringSelf-Tuning Spectral Clustering http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html
CodeFeature Extraction andObject DetectionHistogram of Oriented Graidents - OLT for windowsN. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005http://www.computing.edu.au/~12482661/hog.html
CodeImage UnderstandingNonparametric Scene Parsing via Label TransferC. Liu, J. Yuen, and Antonio Torralba, Nonparametric Scene Parsing via Label Transfer, PAMI 2011http://people.csail.mit.edu/celiu/LabelTransfer/index.html
CodeMultiple Kernel LearningDOGMAF. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learning. CVPR, 2010http://dogma.sourceforge.net/
CodeDistance Metric LearningMatlab Toolkit for Distance Metric Learning http://www.cs.cmu.edu/~liuy/distlearn.htm
CodeOptical FlowBlack and Anandan's Optical Flow http://www.cs.brown.edu/~dqsun/code/ba.zip
CodeText RecognitionText recognition in the wildK. Wang, B. Babenko, and S. Belongie, End-to-end Scene Text Recognition, ICCV 2011http://vision.ucsd.edu/~kai/grocr/
CodeMRF OptimizationMRF Minimization EvaluationR. Szeliski et al., A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors, PAMI, 2008http://vision.middlebury.edu/MRF/
CodeSaliency DetectionContext-aware saliency detectionS. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010.http://webee.technion.ac.il/labs/cgm/Computer-Graphics-Multimedia/Software/Saliency/Saliency.html
CodeSaliency DetectionLearning to Predict Where Humans LookT. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans Look, ICCV, 2009http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html
CodeStereoStereo EvaluationD. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, IJCV 2001http://vision.middlebury.edu/stereo/
CodeImage SegmentationQuick-ShiftA. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode Seeking, ECCV, 2008http://www.vlfeat.org/overview/quickshift.html
CodeSaliency DetectionGraph-based visual saliencyJ. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007http://www.klab.caltech.edu/~harel/share/gbvs.php
CodeClusteringK-Means - VLFeat http://www.vlfeat.org/
CodeObject DetectionA simple object detector with boostingICCV 2005 short courses on Recognizing and Learning Object Categorieshttp://people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html
CodeImage Quality AssessmentStructural SIMilarity https://ece.uwaterloo.ca/~z70wang/research/ssim/
CodeStructure from motionFIT3D http://www.fit3d.info/
CodeImage DenoisingBM3D http://www.cs.tut.fi/~foi/GCF-BM3D/
CodeSaliency DetectionDiscriminant Saliency for Visual Recognition from Cluttered ScenesD. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered Scenes, NIPS, 2004http://www.svcl.ucsd.edu/projects/saliency/
CodeImage DenoisingNonlocal means with cluster treesT. Brox, O. Kleinschmidt, D. Cremers, Efficient nonlocal means for denoising of textural patterns, TIP 2008http://lmb.informatik.uni-freiburg.de/resources/binaries/nlmeans_brox_tip08Linux64.zip
CodeSaliency DetectionGlobal Contrast based Salient Region DetectionM.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region Detection. CVPR, 2011http://cg.cs.tsinghua.edu.cn/people/~cmm/saliency/
CodeVisual TrackingMotion Tracking in Image SequencesC. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time tracking, PAMI, 2000http://www.cs.berkeley.edu/~flw/tracker/
CodeSaliency DetectionItti, Koch, and Niebur' saliency detectionL. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. PAMI, 1998http://www.saliencytoolbox.net/
CodeFeature Detection,Feature Extraction, andAction RecognitionSpace-Time Interest Points (STIP)I. Laptev, On Space-Time Interest Points, IJCV, 2005 and I. Laptev and T. Lindeberg, On Space-Time Interest Points, IJCV 2005http://www.irisa.fr/vista/Equipe/People/Laptev/download/stip-1.1-winlinux.zipandhttp://www.nada.kth.se/cvap/abstracts/cvap284.html
CodeTexture SynthesisImage Quilting for Texture Synthesis and TransferA. A. Efros and W. T. Freeman, Image Quilting for Texture Synthesis and Transfer, SIGGRAPH 2001http://www.cs.cmu.edu/~efros/quilt_research_code.zip
CodeImage DenoisingNon-local Means http://dmi.uib.es/~abuades/codis/NLmeansfilter.m
CodeLow-Rank ModelingTILT: Transform Invariant Low-rank TexturesZ. Zhang, A. Ganesh, X. Liang, and Y. Ma, TILT: Transform Invariant Low-rank Textures, IJCV 2011http://perception.csl.uiuc.edu/matrix-rank/tilt.html
CodeObject ProposalObjectness measureB. Alexe, T. Deselaers, V. Ferrari, What is an Object?, CVPR 2010http://www.vision.ee.ethz.ch/~calvin/objectness/objectness-release-v1.01.tar.gz
CodeImage FilteringReal-time O(1) Bilateral FilteringQ. Yang, K.-H. Tan and N. Ahuja, Real-time O(1) Bilateral Filtering, CVPR 2009http://vision.ai.uiuc.edu/~qyang6/publications/code/qx_constant_time_bilateral_filter_ss.zip
CodeImage Quality AssessmentSPIQA http://vision.ai.uiuc.edu/~bghanem2/shared_code/SPIQA_code.zip
CodeObject RecognitionBiologically motivated object recognitionT. Serre, L. Wolf and T. Poggio. Object recognition with features inspired by visual cortex, CVPR 2005http://cbcl.mit.edu/software-datasets/standardmodel/index.html
CodeIllumination, Reflectance, and ShadowShadow Detection using Paired RegionR. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011http://www.cs.illinois.edu/homes/guo29/projects/shadow.html
CodeIllumination, Reflectance, and ShadowReal-time Specular Highlight RemovalQ. Yang, S. Wang and N. Ahuja, Real-time Specular Highlight Removal Using Bilateral Filtering, ECCV 2010http://www.cs.cityu.edu.hk/~qiyang/publications/code/eccv-10.zip
CodeMRF OptimizationMax-flow/min-cutY. Boykov and V. Kolmogorov, An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision, PAMI 2004http://vision.csd.uwo.ca/code/maxflow-v3.01.zip
CodeOptical FlowOptical Flow EvaluationS. Baker et al. A Database and Evaluation Methodology for Optical Flow, IJCV, 2011http://vision.middlebury.edu/flow/
CodeImage Super-resolutionMRF for image super-resolutionW. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image Processing, Chapter 10. MIT Press, 2011http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution.html
CodeMRF OptimizationPlanar Graph CutF. R. Schmidt, E. Toppe and D. Cremers, Efficient Planar Graph Cuts with Applications in Computer Vision, CVPR 2009http://vision.csd.uwo.ca/code/PlanarCut-v1.0.zip
CodeObject DetectionFeature CombinationP. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/index.html
CodeStructure from motionVisualSFM : A Visual Structure from Motion System http://www.cs.washington.edu/homes/ccwu/vsfm/
CodeNearest Neighbors MatchingANN: Approximate Nearest Neighbor Searching http://www.cs.umd.edu/~mount/ANN/
CodeSaliency DetectionLearning Hierarchical Image Representation with Sparsity, Saliency and LocalityJ. Yang and M.-H. Yang, Learning Hierarchical Image Representation with Sparsity, Saliency and Locality, BMVC 2011 
CodeOptical FlowOptical Flow by Deqing SunD. Sun, S. Roth, M. J. Black, Secrets of Optical Flow Estimation and Their Principles, CVPR, 2010http://www.cs.brown.edu/~dqsun/code/flow_code.zip
CodeImage UnderstandingDiscriminative Models for Multi-Class Object LayoutC. Desai, D. Ramanan, C. Fowlkes. "Discriminative Models for Multi-Class Object Layout, IJCV 2011http://www.ics.uci.edu/~desaic/multiobject_context.zip
CodeGraph MatchingHyper-graph Matching via Reweighted Random WalksJ. Lee, M. Cho, K. M. Lee. "Hyper-graph Matching via Reweighted Random Walks", CVPR 2011http://cv.snu.ac.kr/research/~RRWHM/
CodeObject DetectionHough Forests for Object DetectionJ. Gall and V. Lempitsky, Class-Specific Hough Forests for Object Detection, CVPR, 2009http://www.vision.ee.ethz.ch/~gallju/projects/houghforest/index.html
CodeObject DiscoveryUsing Multiple Segmentations to Discover Objects and their Extent in Image CollectionsB. Russell, A. A. Efros, J. Sivic, W. T. Freeman, A. Zisserman, Using Multiple Segmentations to Discover Objects and their Extent in Image Collections, CVPR 2006http://people.csail.mit.edu/brussell/research/proj/mult_seg_discovery/index.html
CodeDimension ReductionDiffusion maps http://www.stat.cmu.edu/~annlee/software.htm
CodeMultiple Kernel LearningSHOGUNS. Sonnenburg, G. Rätsch, C. Schäfer, B. Schölkopf . Large scale multiple kernel learning. JMLR, 2006http://www.shogun-toolbox.org/
CodeDistance TransformationDistance Transforms of Sampled Functions http://people.cs.uchicago.edu/~pff/dt/
CodeImage FilteringImage smoothing via L0 Gradient MinimizationL. Xu, C. Lu, Y. Xu, J. Jia, Image smoothing via L0 Gradient Minimization, SIGGRAPH Asia 2011http://www.cse.cuhk.edu.hk/~leojia/projects/L0smoothing/L0smoothing.zip
CodeFeature ExtractionPCA-SIFTY. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004http://www.cs.cmu.edu/~yke/pcasift/
CodeVisual TrackingParticle Filter Object Tracking http://blogs.oregonstate.edu/hess/code/particles/
CodeFeature ExtractionsRD-SIFTM. Lourenco, J. P. Barreto and A. Malti, Feature Detection and Matching in Images with Radial Distortion, ICRA 2010http://arthronav.isr.uc.pt/~mlourenco/srdsift/index.html#
CodeMultiple Instance LearningMILESY. Chen, J. Bi and J. Z. Wang, MILES: Multiple-Instance Learning via Embedded Instance Selection. PAMI 2006http://infolab.stanford.edu/~wangz/project/imsearch/SVM/PAMI06/
CodeAction RecognitionDense Trajectories Video DescriptionH. Wang and A. Klaser and C. Schmid and C.- L. Liu, Action Recognition by Dense Trajectories, CVPR, 2011http://lear.inrialpes.fr/people/wang/dense_trajectories
CodeImage SegmentationEfficient Graph-based Image Segmentation - C++ codeP. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation, IJCV 2004http://people.cs.uchicago.edu/~pff/segment/
CodeObject ProposalParametric min-cutJ. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object Segmentation, CVPR 2010http://sminchisescu.ins.uni-bonn.de/code/cpmc/
CodeCommon Visual Pattern DiscoveryCommon Visual Pattern Discovery via Spatially Coherent CorrespondencesH. Liu, S. Yan, "Common Visual Pattern Discovery via Spatially Coherent Correspondences", CVPR 2010https://sites.google.com/site/lhrbss/home/papers/SimplifiedCode.zip?attredirects=0
CodeSparse RepresentationSparse coding simulation softwareOlshausen BA, Field DJ, "Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images", Nature 1996http://redwood.berkeley.edu/bruno/sparsenet/
CodeMRF OptimizationMax-flow/min-cut for massive gridsA. Delong and Y. Boykov, A Scalable Graph-Cut Algorithm for N-D Grids, CVPR 2008http://vision.csd.uwo.ca/code/regionpushrelabel-v1.03.zip
CodeOptical FlowHorn and Schunck's Optical Flow http://www.cs.brown.edu/~dqsun/code/hs.zip
CodeSparse RepresentationSparse and Redundant Representations: From Theory to Applications in Signal and Image ProcessingM. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processinghttp://www.cs.technion.ac.il/~elad/Various/Matlab-Package-Book.rar
CodeImage UnderstandingTowards Total Scene UnderstandingL.-J. Li, R. Socher and Li F.-F.. Towards Total Scene Understanding:Classification, Annotation and Segmentation in an Automatic Framework, CVPR 2009http://vision.stanford.edu/projects/totalscene/index.html
CodeCamera CalibrationCamera Calibration Toolbox for Matlabhttp://www.vision.caltech.edu/bouguetj/calib_doc/htmls/ref.htmlhttp://www.vision.caltech.edu/bouguetj/calib_doc/
CodeImage SegmentationTurbepixelsA. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric Flows, PAMI 2009http://www.cs.toronto.edu/~babalex/research.html
CodeFeature DetectionEdge Foci Interest PointsL. Zitnickand K. Ramnath, Edge Foci Interest Points, ICCV, 2011http://research.microsoft.com/en-us/um/people/larryz/edgefoci/edge_foci.htm
CodeFeature ExtractionLocal Self-Similarity DescriptorE. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity/
CodeSubspace LearningGeneralized Principal Component AnalysisR. Vidal, Y. Ma and S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003http://www.vision.jhu.edu/downloads/main.php?dlID=c1
CodeCamera CalibrationEasyCamCalibJ. Barreto, J. Roquette, P. Sturm, and F. Fonseca, Automatic camera calibration applied to medical endoscopy, BMVC, 2009http://arthronav.isr.uc.pt/easycamcalib/
CodeImage SegmentationSuperpixel by Gerg MoriX. Ren and J. Malik. Learning a classification model for segmentation. ICCV, 2003http://www.cs.sfu.ca/~mori/research/superpixels/
CodeImage UnderstandingObject BankLi-Jia Li, Hao Su, Eric P. Xing and Li Fei-Fei. Object Bank: A High-Level Image Representation for Scene Classification and Semantic Feature Sparsification, NIPS 2010http://vision.stanford.edu/projects/objectbank/index.html
CodeSaliency DetectionSpectrum Scale Space based Visual SaliencyJ Li, M D. Levine, X An and H. He, Saliency Detection Based on Frequency and Spatial Domain Analyses, BMVC 2011http://www.cim.mcgill.ca/~lijian/saliency.htm
CodeSparse RepresentationFisher Discrimination Dictionary Learning for Sparse RepresentationM. Yang, L. Zhang, X. Feng and D. Zhang, Fisher Discrimination Dictionary Learning for Sparse Representation, ICCV 2011http://www4.comp.polyu.edu.hk/~cslzhang/code/FDDL.zip
CodeObject DetectionCascade Object Detection with Deformable Part ModelsP. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part Models. CVPR, 2010http://people.cs.uchicago.edu/~rbg/star-cascade/
CodeObject SegmentationSparse to Dense LabelingP. Ochs, T. Brox, Object Segmentation in Video: A Hierarchical Variational Approach for Turning Point Trajectories into Dense Regions, ICCV 2011http://lmb.informatik.uni-freiburg.de/resources/binaries/SparseToDenseLabeling.tar.gz
CodeOptical FlowDense Point TrackingN. Sundaram, T. Brox, K. Keutzer Dense point trajectories by GPU-accelerated large displacement optical flow, ECCV 2010http://lmb.informatik.uni-freiburg.de/resources/binaries/
CodeVisual TrackingTracking with Online Multiple Instance LearningB. Babenko, M.-H. Yang, S. Belongie, Visual Tracking with Online Multiple Instance Learning, PAMI 2011http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
CodeGraph MatchingReweighted Random Walks for Graph MatchingM. Cho, J. Lee, and K. M. Lee, Reweighted Random Walks for Graph Matching, ECCV 2010http://cv.snu.ac.kr/research/~RRWM/
CodeMachine LearningStatistical Pattern Recognition ToolboxM.I. Schlesinger, V. Hlavac: Ten lectures on the statistical and structural pattern recognition, Kluwer Academic Publishers, 2002http://cmp.felk.cvut.cz/cmp/software/stprtool/
CodeImage Super-resolutionSprarse coding super-resolutionJ. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation, TIP 2010http://www.ifp.illinois.edu/~jyang29/ScSR.htm
CodeObject DetectionDiscriminatively Trained Deformable Part ModelsP. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan. Object Detection with Discriminatively Trained Part Based Models, PAMI, 2010http://people.cs.uchicago.edu/~pff/latent/
CodeMultiple Instance LearningMIForestsC. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized Trees, ECCV 2010http://www.ymer.org/amir/software/milforests/
CodeOptical FlowLarge Displacement Optical FlowT. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimation, PAMI 2011http://lmb.informatik.uni-freiburg.de/resources/binaries/
CodeMultiple View GeometryMATLAB and Octave Functions for Computer Vision and Image ProcessingP. D. Kovesi. MATLAB and Octave Functions for Computer Vision and Image Processing, http://www.csse.uwa.edu.au/~pk/research/matlabfnshttp://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html
CodeImage FilteringAnisotropic DiffusionP. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, PAMI 1990http://www.mathworks.com/matlabcentral/fileexchange/14995-anisotropic-diffusion-perona-malik
CodeFeature Detection andFeature ExtractionGeometric BlurA. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005http://www.robots.ox.ac.uk/~vgg/software/MKL/
CodeLow-Rank ModelingLow-Rank Matrix Recovery and Completion http://perception.csl.uiuc.edu/matrix-rank/sample_code.html
CodeObject DetectionA simple parts and structure object detectorICCV 2005 short courses on Recognizing and Learning Object Categorieshttp://people.csail.mit.edu/fergus/iccv2005/partsstructure.html
CodeKernels and DistancesDiffusion-based distanceH. Ling and K. Okada, Diffusion Distance for Histogram Comparison, CVPR 2006http://www.dabi.temple.edu/~hbling/code/DD_v1.zip
CodeImage DenoisingK-SVD http://www.cs.technion.ac.il/~ronrubin/Software/ksvdbox13.zip
CodeMultiple Kernel LearningSimpleMKLA. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. Simplemkl. JMRL, 2008http://asi.insa-rouen.fr/enseignants/~arakotom/code/mklindex.html
CodeFeature ExtractionPyramids of Histograms of Oriented Gradients (PHOG)A. Bosch, A. Zisserman, and X. Munoz, Representing shape with a spatial pyramid kernel, CIVR, 2007http://www.robots.ox.ac.uk/~vgg/research/caltech/phog/phog.zip
CodeSparse RepresentationEfficient sparse coding algorithmsH. Lee, A. Battle, R. Rajat and A. Y. Ng, Efficient sparse coding algorithms, NIPS 2007http://ai.stanford.edu/~hllee/softwares/nips06-sparsecoding.htm
CodeMulti-View StereoClustering Views for Multi-view StereoY. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, Towards Internet-scale Multi-view Stereo, CVPR 2010http://grail.cs.washington.edu/software/cmvs/
CodeMulti-View StereoMulti-View Stereo EvaluationS. Seitz et al. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, CVPR 2006http://vision.middlebury.edu/mview/
CodeStructure from motionStructure and Motion Toolkit in Matlab http://cms.brookes.ac.uk/staff/PhilipTorr/Code/code_page_4.htm
CodePose EstimationTraining Deformable Models for LocalizationRamanan, D. "Learning to Parse Images of Articulated Bodies." NIPS 2006http://www.ics.uci.edu/~dramanan/papers/parse/index.html
CodeLow-Rank ModelingRASL: Robust Batch Alignment of Images by Sparse and Low-Rank DecompositionY. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, RASL: Robust Batch Alignment of Images by Sparse and Low-Rank Decomposition, CVPR 2010http://perception.csl.uiuc.edu/matrix-rank/rasl.html
CodeDimension ReductionISOMAP http://isomap.stanford.edu/
CodeAlpha MattingLearning-based MattingY. Zheng and C. Kambhamettu, Learning Based Digital Matting, ICCV 2009http://www.mathworks.com/matlabcentral/fileexchange/31412
CodeImage SegmentationNormalized CutJ. Shi and J Malik, Normalized Cuts and Image Segmentation, PAMI, 2000http://www.cis.upenn.edu/~jshi/software/
CodeImage Denoising andStereo MatchingEfficient Belief Propagation for Early VisionP. F. Felzenszwalb and D. P. Huttenlocher, Efficient Belief Propagation for Early Vision, IJCV, 2006http://www.cs.brown.edu/~pff/bp/
CodeSparse RepresentationA Linear Subspace Learning Approach via Sparse CodingL. Zhang, P. Zhu, Q. Hu and D. Zhang, “A Linear Subspace Learning Approach via Sparse Coding,” ICCV 2011http://www4.comp.polyu.edu.hk/~cslzhang/code/LSL_SC.zip
CodeText RecognitionNeocognitron for handwritten digit recognitionK. Fukushima: "Neocognitron for handwritten digit recognition", Neurocomputing, 2003http://visiome.neuroinf.jp/modules/xoonips/detail.php?item_id=375
CodeImage ClassificationSparse Coding for Image ClassificationJ. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image Classification, CVPR, 2009http://www.ifp.illinois.edu/~jyang29/ScSPM.htm
CodeNearest Neighbors MatchingLDAHash: Binary Descriptors for Matching in Large Image DatabasesC. Strecha, A. M. Bronstein, M. M. Bronstein and P. Fua. LDAHash: Improved matching with smaller descriptors, PAMI, 2011.http://cvlab.epfl.ch/research/detect/ldahash/index.php
CodeObject SegmentationClassCut for Unsupervised Class SegmentationB. Alexe, T. Deselaers and V. Ferrari, ClassCut for Unsupervised Class Segmentation, ECCV 2010http://www.vision.ee.ethz.ch/~calvin/classcut/ClassCut-release.zip
CodeImage Quality AssessmentFeature SIMilarity Index http://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm
CodeSaliency DetectionAttention via Information MaximizationN. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2005http://www.cse.yorku.ca/~neil/AIM.zip
CodeImage DenoisingWhat makes a good model of natural images ?Y. Weiss and W. T. Freeman, CVPR 2007http://www.cs.huji.ac.il/~yweiss/BRFOE.zip
CodeImage SegmentationMean-Shift Image Segmentation - Matlab WrapperD. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 2002http://www.wisdom.weizmann.ac.il/~bagon/matlab_code/edison_matlab_interface.tar.gz
CodeObject SegmentationGeodesic Star Convexity for Interactive Image SegmentationV. Gulshan, C. Rother, A. Criminisi, A. Blake and A. Zisserman. Geodesic star convexity for interactive image segmentationhttp://www.robots.ox.ac.uk/~vgg/software/iseg/index.shtml
CodeFeature Detection andFeature ExtractionAffine-SIFTJ.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2009http://www.ipol.im/pub/algo/my_affine_sift/
CodeMRF OptimizationMulti-label optimizationY. Boykov, O. Verksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001http://vision.csd.uwo.ca/code/gco-v3.0.zip
CodeFeature Detection andFeature ExtractionScale-invariant feature transform (SIFT) - Demo SoftwareD. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.http://www.cs.ubc.ca/~lowe/keypoints/
CodeVisual TrackingKLT: An Implementation of the Kanade-Lucas-Tomasi Feature TrackerB. D. Lucas and T. Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981http://www.ces.clemson.edu/~stb/klt/
CodeFeature Detection andFeature ExtractionAffine Covariant FeaturesT. Tuytelaars and K. Mikolajczyk, Local Invariant Feature Detectors: A Survey, Foundations and Trends in Computer Graphics and Vision, 2008http://www.robots.ox.ac.uk/~vgg/research/affine/
CodeImage SegmentationSegmenting Scenes by Matching Image CompositesB. Russell, A. A. Efros, J. Sivic, W. T. Freeman, A. Zisserman, NIPS 2009http://www.cs.washington.edu/homes/bcr/projects/SceneComposites/index.html
CodeImage SegmentationOWT-UCM Hierarchical SegmentationP. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image Segmentation. PAMI, 2011http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
CodeFeature Matching andImage ClassificationThe Pyramid Match: Efficient Matching for Retrieval and RecognitionK. Grauman and T. Darrell. The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features, ICCV 2005http://www.cs.utexas.edu/~grauman/research/projects/pmk/pmk_projectpage.htm
CodeAlpha MattingBayesian MattingY. Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, A Bayesian Approach to Digital Matting, CVPR, 2001http://www1.idc.ac.il/toky/CompPhoto-09/Projects/Stud_projects/Miki/index.html
CodeImage DeblurringRichardson-Lucy Deblurring for Scenes under Projective Motion PathY.-W. Tai, P. Tan, M. S. Brown: Richardson-Lucy Deblurring for Scenes under Projective Motion Path, PAMI 2011http://yuwing.kaist.ac.kr/projects/projectivedeblur/projectivedeblur_files/ProjectiveDeblur.zip
CodePose EstimationArticulated Pose Estimation using Flexible Mixtures of PartsY. Yang, D. Ramanan, Articulated Pose Estimation using Flexible Mixtures of Parts, CVPR 2011http://phoenix.ics.uci.edu/software/pose/
CodeFeature ExtractionBRIEF: Binary Robust Independent Elementary FeaturesM. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV 2010http://cvlab.epfl.ch/research/detect/brief/
CodeFeature ExtractionGlobal and Efficient Self-SimilarityT. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and Detection. CVPR 2010andT. Deselaers, V. Ferrari, Global and Efficient Self-Similarity for Object Classification and Detection, CVPR 2010http://www.vision.ee.ethz.ch/~calvin/gss/selfsim_release1.0.tgz
CodeImage Super-resolutionMulti-frame image super-resolutionPickup, L. C. Machine Learning in Multi-frame Image Super-resolution, PhD thesishttp://www.robots.ox.ac.uk/~vgg/software/SR/index.html
CodeFeature Detection andFeature ExtractionScale-invariant feature transform (SIFT) - LibraryD. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.http://blogs.oregonstate.edu/hess/code/sift/
CodeImage DenoisingClustering-based DenoisingP. Chatterjee and P. Milanfar, Clustering-based Denoising with Locally Learned Dictionaries (K-LLD), TIP, 2009http://users.soe.ucsc.edu/~priyam/K-LLD/
CodeObject RecognitionRecognition by Association via Learning Per-exemplar DistancesT. Malisiewicz, A. A. Efros, Recognition by Association via Learning Per-exemplar Distances, CVPR 2008http://www.cs.cmu.edu/~tmalisie/projects/cvpr08/dfuns.tar.gz
CodeVisual TrackingSuperpixel TrackingS. Wang, H. Lu, F. Yang, and M.-H. Yang, Superpixel Tracking, ICCV 2011http://faculty.ucmerced.edu/mhyang/papers/iccv11a.html
CodeSparse RepresentationSPArse Modeling SoftwareJ. Mairal, F. Bach, J. Ponce and G. Sapiro. Online Learning for Matrix Factorization and Sparse Coding, JMLR 2010http://www.di.ens.fr/willow/SPAMS/
CodeSaliency DetectionSaliency detection: A spectral residual approachX. Hou and L. Zhang. Saliency detection: A spectral residual approach. CVPR, 2007http://www.klab.caltech.edu/~xhou/projects/spectralResidual/spectralresidual.html
CodeImage FilteringGuided Image FilteringK. He, J. Sun, X. Tang, Guided Image Filtering, ECCV 2010http://personal.ie.cuhk.edu.hk/~hkm007/eccv10/guided-filter-code-v1.rar
CodeKernels and DistancesFast Directional Chamfer Matching http://www.umiacs.umd.edu/~mingyliu/src/fdcm_matlab_wrapper_v0.2.zip
CodeVisual TrackingL1 TrackingX. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009http://www.dabi.temple.edu/~hbling/code_data.htm
CodeObject ProposalRegion-based Object ProposalI. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010http://vision.cs.uiuc.edu/proposals/
CodeObject DetectionEnsemble of Exemplar-SVMs for Object Detection and BeyondT. Malisiewicz, A. Gupta, A. A. Efros, Ensemble of Exemplar-SVMs for Object Detection and Beyond , ICCV 2011http://www.cs.cmu.edu/~tmalisie/projects/iccv11/
CodeDimension ReductionDimensionality Reduction Toolbox http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
CodeObject DetectionViola-Jones Object DetectionP. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple Features, CVPR, 2001http://pr.willowgarage.com/wiki/FaceDetection
CodeObject DetectionImplicit Shape ModelB. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and Segmentation, IJCV, 2008http://www.vision.ee.ethz.ch/~bleibe/code/ism.html
CodeSaliency DetectionSaliency detection using maximum symmetric surroundR. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010http://ivrg.epfl.ch/supplementary_material/RK_ICIP2010/index.html
CodeImage FilteringFast Bilateral FilterS. Paris and F. Durand, A Fast Approximation of the Bilateral Filter using a Signal Processing Approach, ECCV, 2006http://people.csail.mit.edu/sparis/bf/
CodeMachine LearningFastICA package for MATLABhttp://research.ics.tkk.fi/ica/book/http://research.ics.tkk.fi/ica/fastica/
CodeFeature Detection andFeature ExtractionMaximally stable extremal regions (MSER)J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002http://www.robots.ox.ac.uk/~vgg/research/affine/
CodeStructure from motionBundlerN. Snavely, S M. Seitz, R Szeliski. Photo Tourism: Exploring image collections in 3D. SIGGRAPH 2006http://phototour.cs.washington.edu/bundler/
CodeVisual TrackingOnline Discriminative Object Tracking with Local Sparse RepresentationQ. Wang, F. Chen, W. Xu, and M.-H. Yang, Online Discriminative Object Tracking with Local Sparse Representation, WACV 2012http://faculty.ucmerced.edu/mhyang/code/wacv12a_code.zip
CodeAlpha MattingClosed Form MattingA. Levin D. Lischinski and Y. Weiss. A Closed Form Solution to Natural Image Matting, PAMI 2008.http://people.csail.mit.edu/alevin/matting.tar.gz
CodeImage FilteringGradientShopP. Bhat, C.L. Zitnick, M. Cohen, B. Curless, and J. Kim, GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering, TOG 2010http://grail.cs.washington.edu/projects/gradientshop/
CodeVisual TrackingIncremental Learning for Robust Visual TrackingD. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual Tracking, IJCV 2007http://www.cs.toronto.edu/~dross/ivt/
CodeFeature Detection andFeature ExtractionColor DescriptorK. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, PAMI, 2010http://koen.me/research/colordescriptors/
CodeImage SegmentationEntropy Rate Superpixel SegmentationM.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR 2011http://www.umiacs.umd.edu/~mingyliu/src/ers_matlab_wrapper_v0.1.zip
CodeImage FilteringDomain TransformationE. Gastal, M. Oliveira, Domain Transform for Edge-Aware Image and Video Processing, SIGGRAPH 2011http://inf.ufrgs.br/~eslgastal/DomainTransform/DomainTransformFilters-Source-v1.0.zip
CodeMultiple Kernel LearningOpenKernel.orgF. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011http://www.openkernel.org/
CodeImage SegmentationEfficient Graph-based Image Segmentation - Matlab WrapperP. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation, IJCV 2004http://www.mathworks.com/matlabcentral/fileexchange/25866-efficient-graph-based-image-segmentation
CodeImage SegmentationBiased Normalized CutS. Maji, N. Vishnoi and J. Malik, Biased Normalized Cut, CVPR 2011http://www.cs.berkeley.edu/~smaji/projects/biasedNcuts/
CodeStereoConstant-Space Belief PropagationQ. Yang, L. Wang, and N. Ahuja, A Constant-Space Belief Propagation Algorithm for Stereo Matching, CVPR 2010http://www.cs.cityu.edu.hk/~qiyang/publications/code/cvpr-10-csbp/csbp.htm
CodeFeature Detection andFeature ExtractionSpeeded Up Robust Feature (SURF) - Open SURFH. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006http://www.chrisevansdev.com/computer-vision-opensurf.html
CodeVisual TrackingOnline boosting trackersH. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR, 2006http://www.vision.ee.ethz.ch/boostingTrackers/
CodeImage DenoisingSparsity-based Image DenoisingW. Dong, X. Li, L. Zhang and G. Shi, Sparsity-based Image Denoising vis Dictionary Learning and Structural Clustering, CVPR, 2011http://www.csee.wvu.edu/~xinl/CSR.html
CodeFeature Detection andFeature ExtractionScale-invariant feature transform (SIFT) - VLFeatD. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004.http://www.vlfeat.org/
CodeClusteringSpectral Clustering - UW Project http://www.stat.washington.edu/spectral/
CodeImage DeblurringAnalyzing spatially varying blurA. Chakrabarti, T. Zickler, and W. T. Freeman, Analyzing Spatially-varying Blur, CVPR 2010http://www.eecs.harvard.edu/~ayanc/svblur/
CodeMultiple Instance LearningDD-SVMYixin Chen and James Z. Wang, Image Categorization by Learning and Reasoning with Regions, JMLR 2004 
CodeFeature ExtractionGIST DescriptorA. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope, IJCV, 2001http://people.csail.mit.edu/torralba/code/spatialenvelope/
CodeImage ClassificationTexture ClassificationM. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005http://www.robots.ox.ac.uk/~vgg/research/texclass/index.html
CodeStructure from motionNonrigid Structure From Motion in Trajectory Space http://cvlab.lums.edu.pk/nrsfm/index.html
CodeAlpha MattingShared MattingE. S. L. Gastal and M. M. Oliveira, Computer Graphics Forum, 2010http://www.inf.ufrgs.br/~eslgastal/SharedMatting/
CodeAction Recognition3D Gradients (HOG3D)A. Klaser, M. Marszałek, and C. Schmid, BMVC, 2008.http://lear.inrialpes.fr/people/klaeser/research_hog3d
CodeImage DenoisingKernel Regressions http://www.soe.ucsc.edu/~htakeda/MatlabApp/KernelRegressionBasedImageProcessingToolBox_ver1-1beta.zip
CodeFeature DetectionBoundary Preserving Dense Local RegionsJ. Kim and K. Grauman, Boundary Preserving Dense Local Regions, CVPR 2011http://vision.cs.utexas.edu/projects/bplr/bplr.html
CodeImage UnderstandingSuperParsingJ. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image Parsing with Superpixels, ECCV 2010http://www.cs.unc.edu/~jtighe/Papers/ECCV10/eccv10-jtighe-code.zip
CodeImage FilteringWeighted Least Squares FilterZ. Farbman, R. Fattal, D. Lischinski, R. Szeliski, Edge-Preserving Decompositions for Multi-Scale Tone and Detail Manipulation, SIGGRAPH 2008http://www.cs.huji.ac.il/~danix/epd/
CodeImage Super-resolutionSingle-Image Super-Resolution Matlab PackageR. Zeyde, M. Elad, and M. Protter, On Single Image Scale-Up using Sparse-Representations, LNCS 2010http://www.cs.technion.ac.il/~elad/Various/Single_Image_SR.zip
CodeImage UnderstandingBlocks World Revisited: Image Understanding using Qualitative Geometry and MechanicsA. Gupta, A. A. Efros, M. Hebert, Blocks World Revisited: Image Understanding using Qualitative Geometry and Mechanics, ECCV 2010http://www.cs.cmu.edu/~abhinavg/blocksworld/#downloads
CodeFeature ExtractionShape ContextS. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contexts, PAMI, 2002http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html
CodeImage Processing andImage FilteringPiotr's Image & Video Matlab ToolboxPiotr Dollar, Piotr's Image & Video Matlab Toolbox, http://vision.ucsd.edu/~pdollar/toolbox/doc/index.htmlhttp://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
CodeIllumination, Reflectance, and ShadowWebcam Clip Art: Appearance and Illuminant Transfer from Time-lapse SequencesJ-F. Lalonde, A. A. Efros, S. G. Narasimhan, Webcam Clip Art: Appearance and Illuminant Transfer from Time-lapse Sequences, SIGGRAPH Asia 2009http://www.cs.cmu.edu/~jlalonde/software.html#skyModel
CodePose EstimationCalvin Upper-Body DetectorE. Marcin, F. Vittorio, Better Appearance Models for Pictorial Structures, BMVC 2009http://www.vision.ee.ethz.ch/~calvin/calvin_upperbody_detector/
CodeImage ClassificationLocality-constrained Linear CodingJ. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image Classification, CVPR, 2010http://www.ifp.illinois.edu/~jyang29/LLC.htm
CodeFeature Detection andFeature ExtractionSpeeded Up Robust Feature (SURF) - Matlab WrapperH. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006http://www.maths.lth.se/matematiklth/personal/petter/surfmex.php
CodePose EstimationEstimating Human Pose from Occluded ImagesJ.-B. Huang and M.-H. Yang, Estimating Human Pose from Occluded Images, ACCV 2009http://faculty.ucmerced.edu/mhyang/code/accv09_pose.zip
CodeStructure from motionOpenSourcePhotogrammetry http://opensourcephotogrammetry.blogspot.com/
CodeImage ClassificationSpatial Pyramid MatchingS. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, CVPR 2006http://www.cs.unc.edu/~lazebnik/research/SpatialPyramid.zip
CodeNearest Neighbors MatchingCoherency Sensitive HashingS. Korman, S. Avidan, Coherency Sensitive Hashing, ICCV 2011http://www.eng.tau.ac.il/~simonk/CSH/index.html
CodeImage SegmentationSegmentation by Minimum Code LengthA. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2007http://perception.csl.uiuc.edu/coding/image_segmentation/
CodeSaliency DetectionFrequency-tuned salient region detectionR. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009http://ivrgwww.epfl.ch/supplementary_material/RK_CVPR09/index.html
CodeMRF OptimizationMax-flow/min-cut for shape fittingV. Lempitsky and Y. Boykov, Global Optimization for Shape Fitting, CVPR 2007http://www.csd.uwo.ca/faculty/yuri/Implementations/TouchExpand.zip
CodeFeature DetectionCanny Edge DetectionJ. Canny, A Computational Approach To Edge Detection, PAMI, 1986http://www.mathworks.com/help/toolbox/images/ref/edge.html
CodeObject DetectionMultiple KernelsA. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object Detection. ICCV, 2009http://www.robots.ox.ac.uk/~vgg/software/MKL/
CodeImage SegmentationMean-Shift Image Segmentation - EDISOND. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 2002http://coewww.rutgers.edu/riul/research/code/EDISON/index.html
CodeImage Quality AssessmentDegradation Model http://users.ece.utexas.edu/~bevans/papers/2000/imageQuality/index.html
CodeObject DetectionEnsemble of Exemplar-SVMsT. Malisiewicz, A. Gupta, A. Efros. Ensemble of Exemplar-SVMs for Object Detection and Beyond . ICCV, 2011http://www.cs.cmu.edu/~tmalisie/projects/iccv11/
CodeImage DeblurringRadon TransformT. S. Cho, S. Paris, B. K. P. Horn, W. T. Freeman, Blur kernel estimation using the radon transform, CVPR 2011http://people.csail.mit.edu/taegsang/Documents/RadonDeblurringCode.zip
CodeImage DeblurringEficient Marginal Likelihood Optimization in Blind DeconvolutionA. Levin, Y. Weiss, F. Durand, W. T. Freeman. Efficient Marginal Likelihood Optimization in Blind Deconvolution, CVPR 2011http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR2011Code.zip
CodeFeature DetectionFAST Corner DetectionE. Rosten and T. Drummond, Machine learning for high-speed corner detection, ECCV, 2006http://www.edwardrosten.com/work/fast.html
CodeImage Super-resolutionMDSP Resolution Enhancement SoftwareS. Farsiu, D. Robinson, M. Elad, and P. Milanfar, Fast and Robust Multi-frame Super-resolution, TIP 2004http://users.soe.ucsc.edu/~milanfar/software/superresolution.html
CodeFeature Extraction andObject DetectionHistogram of Oriented Graidents - INRIA Object Localization ToolkitN. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005http://www.navneetdalal.com/software
CodeVisual TrackingGlobally-Optimal Greedy Algorithms for Tracking a Variable Number of ObjectsH. Pirsiavash, D. Ramanan, C. Fowlkes. "Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects, CVPR 2011http://www.ics.uci.edu/~hpirsiav/papers/tracking_cvpr11_release_v1.0.tar.gz
CodeSaliency DetectionSegmenting salient objects from images and videosE. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videos. CVPR, 2010http://www.cse.oulu.fi/MVG/Downloads/saliency
CodeVisual TrackingObject TrackingA. Yilmaz, O. Javed and M. Shah, Object Tracking: A Survey, ACM Journal of Computing Surveys, Vol. 38, No. 4, 2006http://plaza.ufl.edu/lvtaoran/object%20tracking.htm
CodeMachine LearningBoosting Resources by Liangliang Caohttp://www.ifp.illinois.edu/~cao4/reading/boostingbib.htmhttp://www.ifp.illinois.edu/~cao4/reading/boostingbib.htm
CodeMachine LearningNetlab Neural Network SoftwareC. M. Bishop, Neural Networks for Pattern RecognitionㄝOxford University Press, 1995http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
CodeOptical FlowClassical Variational Optical FlowT. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, ECCV 2004http://lmb.informatik.uni-freiburg.de/resources/binaries/
CodeSparse RepresentationCentralized Sparse Representation for Image RestorationW. Dong, L. Zhang and G. Shi, “Centralized Sparse Representation for Image Restoration,” ICCV 2011http://www4.comp.polyu.edu.hk/~cslzhang/code/CSR_IR.zip
CourseComputer VisionIntroduction to Computer Vision, Stanford University, Winter 2010-2011Fei-Fei Lihttp://vision.stanford.edu/teaching/cs223b/
CourseComputer VisionComputer Vision: From 3D Reconstruction to Visual Recognition, Fall 2012Silvio Savarese and Fei-Fei Lihttps://www.coursera.org/course/computervision
CourseComputer VisionComputer Vision, University of Texas at Austin, Spring 2011Kristen Graumanhttp://www.cs.utexas.edu/~grauman/courses/spring2011/index.html
CourseComputer VisionLearning-Based Methods in Vision, CMU, Spring 2012Alexei “Alyosha” Efros and Leonid Sigalhttps://docs.google.com/document/pub?id=1jGBn7zPDEaU33fJwi3YI_usWS-U6gpSSJotV_2gDrL0
CourseVisual RecognitionVisual Recognition, University of Texas at Austin, Fall 2011Kristen Graumanhttp://www.cs.utexas.edu/~grauman/courses/fall2011/schedule.html
CourseComputer VisionIntroduction to Computer VisionJames Hays, Brown University, Fall 2011http://www.cs.brown.edu/courses/cs143/
CourseComputer VisionComputer Vision, University of North Carolina at Chapel Hill, Spring 2010Svetlana Lazebnikhttp://www.cs.unc.edu/~lazebnik/spring10/
CourseComputer VisionComputer Vision: The Fundamentals, University of California at Berkeley, Fall 2012Jitendra Malikhttps://www.coursera.org/course/vision
CourseComputational PhotographyComputational Photography, University of Illinois, Urbana-Champaign, Fall 2011Derek Hoiemhttp://www.cs.illinois.edu/class/fa11/cs498dh/
CourseGraphical ModelsInference in Graphical Models, Stanford University, Spring 2012Andrea Montanari, Stanford Universityhttp://www.stanford.edu/~montanar/TEACHING/Stat375/stat375.html
CourseComputer VisionComputer Vision, New York University, Fall 2012Rob Fergushttp://cs.nyu.edu/~fergus/teaching/vision_2012/index.html
CourseComputer VisionAdvances in Computer VisionAntonio Torralba, MIT, Spring 2010http://groups.csail.mit.edu/vision/courses/6.869/
CourseComputer VisionComputer Vision, University of Illinois, Urbana-Champaign, Spring 2012Derek Hoiemhttp://www.cs.illinois.edu/class/sp12/cs543/
CourseComputational PhotographyComputational Photography, CMU, Fall 2011Alexei “Alyosha” Efroshttp://graphics.cs.cmu.edu/courses/15-463/2011_fall/463.html
CourseComputer VisionComputer Vision, University of Washington, Winter 2012Steven Seitzhttp://www.cs.washington.edu/education/courses/cse455/12wi/
LinkSource codeSource Code Collection for Reproducible Researchcollected by Xin Li, Lane Dept of CSEE, West Virginia Universityhttp://www.csee.wvu.edu/~xinl/reproducible_research.html
LinkComputer VisionComputer Image Analysis, Computer Vision ConferencesUSChttp://iris.usc.edu/information/Iris-Conferences.html
LinkComputer VisionCV Papers on the webCVPapershttp://www.cvpapers.com/index.html
LinkComputer VisionCVonlineCVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Visionhttp://homepages.inf.ed.ac.uk/rbf/CVonline/
LinkDatasetCompiled list of recognition datasetscompiled by Kristen Graumanhttp://www.cs.utexas.edu/~grauman/courses/spring2008/datasets.htm
LinkComputer VisionAnnotated Computer Vision Bibliographycompiled by Keith Pricehttp://iris.usc.edu/Vision-Notes/bibliography/contents.html
LinkComputer VisionThe Computer Vision homepage http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html
LinkComputer Vision IndustryThe Computer Vision IndustryDavid Lowehttp://www.cs.ubc.ca/~lowe/vision.html
LinkSource codeComputer Vision Algorithm ImplementationsCVPapershttp://www.cvpapers.com/rr.html
LinkComputer VisionCV Datasets on the webCVPapershttp://www.cvpapers.com/datasets.html
TalkVisual RecognitionUnderstanding Visual ScenesAntonio Torralba, MIThttp://videolectures.net/nips09_torralba_uvs/
TalkNeuroscienceLearning in Hierarchical Architectures: from Neuroscience to Derived KernelsTomaso A. Poggio, McGovern Institute for Brain Research, Massachusetts Institute of Technologyhttp://videolectures.net/mlss09us_poggio_lhandk/
TalkDeep LearningA tutorial on Deep LearningGeoffrey E. Hinton, Department of Computer Science, University of Torontohttp://videolectures.net/jul09_hinton_deeplearn/
TalkBoostingTheory and Applications of BoostingRobert Schapire, Department of Computer Science, Princeton Universityhttp://videolectures.net/mlss09us_schapire_tab/
TalkGraphical ModelsGraphical Models and message-passing algorithmsMartin J. Wainwright, University of California at Berkeleyhttp://videolectures.net/mlss2011_wainwright_messagepassing/
TalkStatistical Learning TheoryStatistical Learning TheoryJohn Shawe-Taylor, Centre for Computational Statistics and Machine Learning, University College Londonhttp://videolectures.net/mlss04_taylor_slt/
TalkGaussian ProcessGaussian Process BasicsDavid MacKay, University of Cambridgehttp://videolectures.net/gpip06_mackay_gpb/
TalkInformation TheoryInformation TheoryDavid MacKay, University of Cambridgehttp://videolectures.net/mlss09uk_mackay_it/
TalkOptimizationOptimization Algorithms in Machine LearningStephen J. Wright, Computer Sciences Department, University of Wisconsin - Madisonhttp://videolectures.net/nips2010_wright_oaml/
TalkBayesian InferenceIntroduction To Bayesian InferenceChristopher Bishop, Microsoft Researchhttp://videolectures.net/mlss09uk_bishop_ibi/
TalkBayesian NonparametricsModern Bayesian NonparametricsPeter Orbanz and Yee Whye Tehhttp://www.youtube.com/watch?v=F0_ih7THV94&feature=relmfu
TalkKernels and DistancesMachine learning and kernel methods for computer visionFrancis R. Bach, INRIAhttp://videolectures.net/etvc08_bach_mlakm/
TalkOptimizationConvex OptimizationLieven Vandenberghe, Electrical Engineering Department, University of California, Los Angeleshttp://videolectures.net/mlss2011_vandenberghe_convex/
TalkOptimizationEnergy Minimization with Label costs and Applications in Multi-Model FittingYuri Boykov, Department of Computer Science, University of Western Ontariohttp://videolectures.net/nipsworkshops2010_boykov_eml/
TalkObject DetectionObject Recognition with Deformable ModelsPedro Felzenszwalb, Brown Universityhttp://www.youtube.com/watch?v=_J_clwqQ4gI
TalkLow-level visionLearning and Inference in Low-Level VisionYair Weiss, School of Computer Science and Engineering, The Hebrew University of Jerusalemhttp://videolectures.net/nips09_weiss_lil/
Talk3D Computer Vision3D Computer Vision: Past, Present, and FutureSteven Seitz, University of Washington, Google Tech Talk, 2011http://www.youtube.com/watch?v=kyIzMr917Rc
TalkOptimizationWho is Afraid of Non-Convex Loss Functions?Yann LeCun, New York Universityhttp://videolectures.net/eml07_lecun_wia/
TalkSparse RepresentationSparse Methods for Machine Learning: Theory and AlgorithmsFrancis R. Bach, INRIAhttp://videolectures.net/nips09_bach_smm/
TalkOptimization and Support Vector MachinesOptimization Algorithms in Support Vector MachinesStephen J. Wright, Computer Sciences Department, University of Wisconsin - Madisonhttp://videolectures.net/mlss09us_wright_oasvm/
TalkInformation TheoryInformation Theory in Learning and ControlNaftali (Tali) Tishby, The Hebrew Universityhttp://www.youtube.com/watch?v=GKm53xGbAOk&feature=relmfu
TalkRelative EntropyRelative EntropySergio Verdu, Princeton Universityhttp://videolectures.net/nips09_verdu_re/
TutorialObject DetectionGeometry constrained parts based detectionSimon Lucey, Jason Saragih, ICCV 2011 Tutorialhttp://ci2cv.net/tutorials/iccv-2011/
TutorialGraphical ModelsLearning with inference for discrete graphical modelsNikos Komodakis, Pawan Kumar, Nikos Paragios, Ramin Zabih, ICCV 2011 Tutorialhttp://www.csd.uoc.gr/~komod/ICCV2011_tutorial/
TutorialVariational CalculusVariational methods for computer visionDaniel Cremers, Bastian Goldlucke, Thomas Pock, ICCV 2011 Tutorialhttp://cvpr.in.tum.de/tutorials/iccv2011
Tutorial3D perceptionComputer Vision and 3D Perception for RoboticsRadu Bogdan Rusu, Gary Bradski, Caroline Pantofaru, Stefan Hinterstoisser, Stefan Holzer, Kurt Konolige and Andrea Vedaldi, ECCV 2010 Tutorialhttp://www.willowgarage.com/workshops/2010/eccv
TutorialAction RecognitionLooking at people: The past, the present and the futureL. Sigal, T. Moeslund, A. Hilton, V. Kruger, ICCV 2011 Tutorialhttp://www.cs.brown.edu/~ls/iccv2011tutorial.html
TutorialNon-linear Least SquaresComputer vision fundamentals: robust non-linear least-squares and their applicationsPascal Fua, Vincent Lepetit, ICCV 2011 Tutorialhttp://cvlab.epfl.ch/~fua/courses/lsq/
TutorialAction RecognitionFrontiers of Human Activity AnalysisJ. K. Aggarwal, Michael S. Ryoo, and Kris Kitani, CVPR 2011 Tutorialhttp://cvrc.ece.utexas.edu/mryoo/cvpr2011tutorial/
TutorialStructured PredictionStructured Prediction and Learning in Computer VisionS. Nowozin and C. Lampert, CVPR 2011 Tutorialhttp://www.nowozin.net/sebastian/cvpr2011tutorial/
TutorialAction RecognitionStatistical and Structural Recognition of Human ActionsIvan Laptev and Greg Mori, ECCV 2010 Tutorialhttps://sites.google.com/site/humanactionstutorialeccv10/
TutorialComputational SymmetryComputational Symmetry: Past, Current, FutureYanxi Liu, ECCV 2010 Tutorialhttp://vision.cse.psu.edu/research/symmComp/index.shtml
TutorialMatlabMatlab TutorialDavid Kriegman and Serge Belongiehttp://www.cs.unc.edu/~lazebnik/spring10/matlab.intro.html
TutorialMatlabWriting Fast MATLAB CodePascal Getreuer, Yale Universityhttp://www.mathworks.com/matlabcentral/fileexchange/5685
TutorialSpectral ClusteringA Tutorial on Spectral ClusteringUlrike von Luxburg, Max Planck Institute for Biological Cyberneticshttp://web.mit.edu/~wingated/www/introductions/tutorial_on_spectral_clustering.pdf
TutorialFeature Learning, Image ClassificationFeature Learning for Image ClassificationKai Yu and Andrew Ng, ECCV 2010 Tutorialhttp://ufldl.stanford.edu/eccv10-tutorial/
TutorialShape Analysis, Diffusion GeometryDiffusion Geometry Methods in Shape AnalysisA. Brontein and M. Bronstein, ECCV 2010 Tutorialhttp://tosca.cs.technion.ac.il/book/course_eccv10.html
TutorialGraphical ModelsGraphical Models, Exponential Families, and Variational InferenceMartin J. Wainwright and Michael I. Jordan, University of California at Berkeleyhttp://www.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
TutorialColor Image ProcessingColor image understanding: from acquisition to high-level image understandingTheo Gevers, Keigo Hirakawa, Joost van de Weijer, ICCV 2011 Tutorialhttp://www.cat.uab.cat/~joost/tutorial_iccv.html
TutorialStructure from motionNonrigid Structure from MotionY. Sheikh and Sohaib Khan, ECCV 2010 Tutorialhttp://www.cs.cmu.edu/~yaser/ECCV2010Tutorial.html
TutorialExpectation MaximizationA Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov ModelsJeff A. Bilmes, University of California at Berkeleyhttp://crow.ee.washington.edu/people/bulyko/papers/em.pdf
TutorialDecision ForestsDecision forests for classification, regression, clustering and density estimationA. Criminisi, J. Shotton and E. Konukoglu, ICCV 2011 Tutorialhttp://research.microsoft.com/en-us/groups/vision/decisionforests.aspx
Tutorial3D point cloud processing3D point cloud processing: PCL (Point Cloud Library)R. Rusu, S. Holzer, M. Dixon, V. Rabaud, ICCV 2011 Tutorialhttp://www.pointclouds.org/media/iccv2011.html
TutorialImage RegistrationTools and Methods for Image RegistrationBrown, G. Carneiro, A. A. Farag, E. Hancock, A. A. Goshtasby (Organizer), J. Matas, J.M. Morel, N. S. Netanyahu, F. Sur, and G. Yu, CVPR 2011 Tutorialhttp://www.imgfsr.com/CVPR2011/Tutorial6/
TutorialNon-rigid registrationNon-rigid registration and reconstructionAlessio Del Bue, Lourdes Agapito, Adrien Bartoli, ICCV 2011 Tutorialhttp://www.isr.ist.utl.pt/~adb/tutorial/
TutorialVariational CalculusVariational Methods in Computer VisionD. Cremers, B. Goldlücke, T. Pock, ECCV 2010 Tutorialhttp://cvpr.cs.tum.edu/tutorials/eccv2010
TutorialDistance Metric LearningDistance Functions and Metric LearningM. Werman, O. Pele and B. Kulis, ECCV 2010 Tutorialhttp://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/
TutorialFeature ExtractionImage and Video Description with Local Binary Pattern VariantsM. Pietikainen and J. Heikkila, CVPR 2011 Tutorialhttp://www.ee.oulu.fi/research/imag/mvg/files/pdf/CVPR-tutorial-final.pdf
TutorialGame TheoryGame Theory in Computer Vision and Pattern RecognitionMarcello Pelillo and Andrea Torsello, CVPR 2011 Tutorialhttp://www.dsi.unive.it/~atorsell/cvpr2011tutorial/
TutorialComputational ImagingFcam: an architecture and API for computational camerasKari Pulli, Andrew Adams, Timo Ahonen, Marius Tico, ICCV 2011 Tutorialhttp://fcam.garage.maemo.org/iccv2011.html
 
 

Other useful links (dataset, lectures, and other softwares)

Conference Information

Papers

Datasets

Lectures

Source Codes

Patents

Source Codes

mr_raptor CSDN认证博客专家 精益工程 驱动开发
北京同远天下创始人,专注于企业服务,企业系统解决方案,物联网,智慧社区,产品有众狐客服系统,众狐邮箱验证系统,著有《深入浅出嵌入式底层软件开发》北航出版社
相关推荐